711
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Green synthesis, characterization applications of iron oxide nanoparticles for antialgal and wastewater bioremediation using three brown algae

ORCID Icon, , , &

References

  • Abd El-Hady H, Hamed ER, Shehata AN. 2012. Molecular identification, antimicrobial and antioxidant activities of the tropical sea grass Halophila stipulacea grown in El-Bardawil Lake, Egypt. Aust J Basic Appl Sci. 6(12):474–481.
  • Abdel Ghani SA, Shobier AH, Shreadah MA. 2013. Assessment of Arsenic and Vanadium pollution in surface sediments of the Egyptian Mediterranean Coast. J Environ Technol Manag. 16(1/2):82–101. doi:https://doi.org/10.1504/IJETM.2013.050673.
  • Adochite C, Andronic L. 2020. Aquatic toxicity of photocatalyst nanoparticles to green microalgae Chlorella vulgaris. Water. 13(1):77. doi:https://doi.org/10.3390/w13010077.
  • Ahmad S, Riaz U, Kaushik A, Alam J. 2009. Soft template synthesis of super paramagnetic Fe3O4 nanoparticles a novel technique. J Inorg Organomet Polym Mater. 19(3):355–360. doi:https://doi.org/10.1007/s10904-009-9276-6.
  • Anuradha J, Abbasi T, Abbasi SA. 2015. An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (Pistia stratiotes L.). J Adv Res. 6(5):711–720.
  • APHA, AWWA, WEF. 2005. Standard methods for the examination of water and wastewater. 21st ed. Washington, DC: Am J Public Health.
  • Askari Hesni M, Hedayati SA, Qadermarzi A, Pouladi M, Zangiabadi S, Naqshbandi N. 2019. Comparison ability of algae and nanoparticles on nitrate and phosphate removal from aquaculture wastewater. Environ Health Eng Manag. 6(3):171–177.
  • Bani Najjar F. 2015. Removal of nitrate from drinking water sources using carbon granules coated with zero iron. Tehran: East Tehran Center, Faculty of Science, PNU Payame Noor University of Tehran. p. 140.
  • Bonsdorff E, Rönnberg C, Aarnio K. 2002. Some ecological properties in relation to eutrophication in the Baltic Sea. Hydrobiologia. 475/476:371–377. 
  • Cao D, Jin X, Gan L, Wang T, Chen Z. 2016. Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant. Chemosphere. 159:23–31.
  • Caspi V, Droppa M, Horváth G, Malkin S, Marder JB, Raskin VI. 1999. The effect of copper on chlorophyll organization during greening of barley leaves. Photosynth Res. 62(2/3):165–174. doi:https://doi.org/10.1023/A:1006397714430.
  • Chandran M, Yuvaraj D, Christudhas L, Ramesh KV. 2016. Bio synthesis of iron nanoparticles using the brown seaweed, Dictyota dicotoma. Biotechnol Indian J. 12(12):112.
  • Chen YM, Li CW, Chen SS. 2005. Fluidized zero valent iron bed reactor for nitrate removal. Chemosphere. 59(6):753–759. doi:https://doi.org/10.1016/j.chemosphere.2004.11.020.
  • Das RK, Borthakur BB, Bora U. 2010. Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Mater Lett. 64(13):1445–1447.
  • Dave PN, Chopda LV. 2014. Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol. 2014(1):1–14. doi:https://doi.org/10.1155/2014/398569.
  • Davis AS, Prakash P, Thamaraiselvi K. 2017. Nanobioremediation technologies for sustainable environment. In: Prashanthi M, Sundaram R, Jeyaseelan A, Kaliannan T. editors, Bioremediation and sustainable technologies for clean environment. Springer International Publishing. p. 13–33.
  • Davis SA, Patel HM, Mayes EL, Mendelson NH, Franco G, Mann S. 1998. Brittle bacteria: a biomimetic approach to the formation of fibrous composite materials. Chem Mater. 10(9):2516–2524. doi:https://doi.org/10.1021/cm9802853.
  • de Jonge VN, Elliott M, Orive E. 2002. Causes, historical development, effects and future challenges of a common environmental problem: eutrophication. Hydrobiologia 475(1):1–19.
  • Devi HS, Boda MA, Shah MA, Parveen S, Wani AH. 2019. Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process Synth. 8(1):38–45.
  • EEAA. 2009. A scientific report of Alexandria integrated coastal zone management project. Environmental and social impact Assessment, 113.
  • El-Kassas HY, Aly-Eldeen MA, Gharib SM. 2016. Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: characterization and application for lead bioremediation. Acta Oceanol Sin. 35(8):89–98. doi:https://doi.org/10.1007/s13131-016-0880-3.
  • El-Kassas HY, Ghobrial MG. 2017. Biosynthesis of metal nanoparticles using three marine plant species: anti-algal efficiencies against “Oscillatoria simplicíssima”. Environ Sci Pollut Res. 24(8):7837–7849.
  • El-Kassas HY, Okbah MA. 2017. Phytotoxic effects of seaweed mediated copper nanoparticles against the harmful alga: Lyngbya majuscula. J Genet Eng Biotechnol. 15(1):41–48. doi:https://doi.org/10.1016/j.jgeb.2017.01.002.
  • El-Rafie HM, El-Rafie MH, Abd Elsalam HM, El-Sayed WA. 2016. Antibacterial and anti-inflammatory finishing of cotton by microencapsulation using three marine organisms. Int J Biol Macromol. 86:59–64.
  • El-Rafie HM, El-Rafie M, Zahran MK. 2013. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr Polym. 96(2):403–410.
  • El-Sheekh M, Abdel-Daim M, Okba M, Gharib S, Soliman S, El-Kassas H. 2021. Green technology for bioremediation of the eutrophication phenomenon in aquatic ecosystems: a review. Afr J Aquat Sci. 1–19. doi:https://doi.org/10.2989/16085914.2020.1860892.
  • Ercan G, Uzunoğlu D, Ergüt M, Özer A. 2019. Biosynthesis and characterization of iron oxide nanoparticles from Enteromorpha spp. extract: determination of adsorbent properties for copper (II) ions. IAREJ. 3(1):65–74.
  • Forough M, Fahadi K. 2011. Biological and green synthesis of silver nanoparticles. Turkish J Eng Env Sci. 34(4):281–287.
  • Grasshoff K, Ehrhardt M, Kremling K. 1983. Methods of seawater analysis. Berlin: Verlag Chemie. p. 419.
  • Guo D, Xie G, Luo J. 2014. Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys. 47:1–25.
  • Hashem F, Nasr M, Ahmed Y. 2018. Preparation and evaluation of iron oxide nanoparticles for treatment of iron deficiency anaemia. Int J Pharm Sci. 10(1):142–146.
  • Hashemi S, Givianrad MH, Moradi AM, Larijani K. 2015. Biosynthesis of silver nanoparticles using brown marine seaweed Padina boeregeseni and evaluation of physico-chemical factors. http://nopr.niscair.res.in/handle/123456789/34930.
  • Hassaan MA, Hosny S. 2018. Green synthesis of Ag and Au nanoparticles from micro and macro algae-review. IJAOS. 2(1):10–22.
  • Heidari A, Younesi H, Mehraban Z, Heikkinen H. 2013. Selective adsorption of Pb (II), Cd (II), and Ni (II) ions from aqueous solution using chitosan–MAA nanoparticles. Int J Biol Macromol. 61:251–263.
  • Hlongwane GN, Sekoai PT, Meyyappan M, Moothi K. 2019. Simultaneous removal of pollutants from water using nanoparticles: a shift from single pollutant control to multiple pollutant control. Sci Tot Environ. 656:808–833. doi:https://doi.org/10.1016/j.scitotenv.2018.11.257.
  • Iosin M, Baldeck P, Astilean S. 2010. Study of tryptophan assisted synthesis of gold nanoparticles by combining UV–Vis, fluorescence, and SERS spectroscopy. J. Nanopart Res. 12(8):2843–2849.
  • Iram M, Guo C, Guan Y, Ishfaq A, Liu H. 2010. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J Hazard Mater. 181(1–3):1039–1050.
  • Kang YS, Risbud S, Rabolt JF, Stroeve P. 1996. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem Mater. 8(9):2209–2211.
  • Kannan RRR, Stirk WA, Van Staden J. 2013. Synthesis of silver nanoparticles using the seaweed Codium capitatum PC Silva (Chlorophyceae). S Afr J Bot. 86:1–4.
  • Kaur N, Kaur M, Chopra S, Singh J, Kuwar A, Singh N. 2018. Fe (III) conjugated fluorescent organic nanoparticles for ratiometric detection of tyramine in aqueous medium: a novel method to determine food quality. Food Chem. 245:1257–1261. doi:https://doi.org/10.1016/j.foodchem.2017.11.097.
  • Koroleff F. 1983. Simultaneous oxidation of nitrogen and phosphorus compounds by persulfate. In: Methods of seawater analysis. Vol. 2. Berlin: Verlag Chemie. p. 205–206.
  • Kumar B, Smita K, Cumbal L, Debut A. 2014. Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. J Saudi Chem Soc. 18(4):364–369.
  • Lewis Oscar F, Vismaya S, Arunkumar M, Thajuddin N, Dhanasekaran D, Nithya C. 2016. Algal nanoparticles: synthesis and biotechnological potentials. Algae–Org Imminent Biotechnol. 7:157–182.
  • Li YX, Wijesekara I, Li Y, Kim SK. 2011. Phlorotannins as bioactive agents from brown algae. Process Biochem. 46(12):2219–2224. doi:https://doi.org/10.1016/j.procbio.2011.09.015.
  • Mahana A, Guliy IO, Mehta SK. 2021. Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: current status and future challenges. Ecotoxicol Environ Saf. 208:111662. doi:https://doi.org/10.1016/j.ecoenv.2020.111662.
  • Mahdavi M, Namvar F, Ahmad MB, Mohamad R. 2013. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules. 18(5):5954–5964. doi:https://doi.org/10.3390/molecules18055954.
  • Mikhak A, Sohrabi A, Kassaee MZ, Feizian M, Disfani MN. 2017. Removal of nitrate and phosphate from water by clinoptilolite-supported iron hydroxide nanoparticle. Arab J Sci Eng. 42(6):2433–2439. doi:https://doi.org/10.1007/s13369-017-2432-3.
  • Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 27:31–36.
  • Nakai S, Inoue Y, Hosomi M, Murakami A. 2000. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Res. 34(11):3026–3032.
  • Ngatia L, Grace JM III, Moriasi D, Taylor R. 2019. Nitrogen and phosphorus eutrophication in marine ecosystems. Monitor Mar Pollut. Houma Bachari Fouzia, IntechOpen. DOI:https://doi.org/10.5772/intechopen.81869.
  • Orihel DM, Schindler DW, Ballard NC, Wilson LR, Vinebrooke RD. 2016. Experimental iron amendment suppresses toxic cyanobacteria in a hypereutrophic lake. Ecol Appl. 26(5):1517–1534.
  • Patel V, Berthold D, Puranik P, Gantar M. 2015. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep. 5:112–119.
  • Pattanayak M, Nayak PL. 2013. Ecofriendly green synthesis of iron nanoparticles from various plants and spices extract. IJPAES. 3(1):68–78.
  • Qu S, Yang H, Ren D, Kan S, Zou G, Li D, Li M. 1999. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J Colloid Interface Sci. 215(1):190–192.
  • Rafati L, Nabizadeh R, Mahvi AH, Dehghani MH. 2012. Removal of phosphate from aqueous solutions by iron nano-particle resin Lewatit (FO36). Korean J Chem Eng. 29(4):473–477. doi:https://doi.org/10.1007/s11814-011-0212-4.
  • Rauwel P, Küünal S, Ferdov S, Rauwel E. 2015. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng. 2015. doi:https://doi.org/10.1155/2015/682749.
  • Reddy KR, Adams JA. 2010. Towards green and sustainable remediation of contaminated site. Paper presented at: 6th International Congress of Environmental Geotechnics, New Delhi, India.
  • Salem DM, Ismail MM, Aly-Eldeen MA. 2019. Biogenic synthesis and antimicrobial potency of iron oxide (Fe3O4) nanoparticles using algae harvested from the Mediterranean Sea, Egypt. J Aquat Res. 45(3):197–204. doi:https://doi.org/10.1016/j.ejar.2019.07.002.
  • Sandhya J, Kalaiselvam S. 2020. Biogenic synthesis of magnetic iron oxide nanoparticles using inedible Borassus flabellifer seed coat: characterization, antimicrobial, antioxidant activity and in vitro cytotoxicity analysis. Mater Res Expr. 7 (1):015045. doi:https://doi.org/10.1088/2053-1591/ab6642.
  • Shanab S, Essa A, Shalaby E. 2012. Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates). Plant Signal Behav. 7(3):392–399.
  • Shao Y, Jin Y, Dong S. 2004. Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem Commun. 2004(9):1104–1105.
  • Sharma D, Kanchi S, Bisetty K. 2019. Biogenic synthesis of nanoparticles: a review. Arab J Chem. 12(8):3576–3600.
  • Shaw GR, Moore DP, Garnett C. 2003. Eutrophication and algal blooms. Environ Ecol Chem. 2:1–21.
  • Siji S, Njana J, Amrita PJ, Vishnudasan D. 2018. Biogenic synthesis of iron oxide nanoparticles from marine algae. Int Multidiscip Res J. 1(1):1–7.
  • Smith VH, Joye SB, Howarth RW. 2006. Eutrophication of freshwater and marine ecosystems. Limnol Oceanogr. 51:351–355.
  • Strickland JDH. 1968. A practical handbook of seawater analysis. Bull. Fish. Res. Bd. Canada. 167:81–86.
  • Strickland JDH, Parsons TR. 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada Bulletin 157, 2nd ed. Ottawa, Canada. p. 310.
  • Tratnyek PG, Johnson RL. 2006. Nanotechnologies for environmental cleanup. Nano Today. 1(2):44–48. doi:https://doi.org/10.1016/S1748-0132(06)70048-2.
  • Valderrama JC. 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar Chem. 10(2):109–122.
  • Von Tress N. 2019. Effectiveness of titanium and iron nanoparticles in treating M. aeruginosa for harmful algal bloom remediation [Undergraduate Honors Thesis].
  • Wassmann P, Olli K. 2005. Drainage basin nutrient inputs and eutrophication: an integrated approach. Estonia: University of Tromsø, Norway & Tartu University. p. 325.
  • Yew YP, Shameli K, Miyake M, Kuwano N, Khairudin NBBA, Mohamad SEB, Lee KX. 2016. Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res Lett. 11(1):1–7.
  • Zhang J, Xie Z, Jiang X, Wang Z. 2014. Control of cyanobacterial blooms via synergistic effects of pulmonates and submerged plants. Clean-Soil Air Water. 42:1–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.