205
Views
0
CrossRef citations to date
0
Altmetric
Articles

Metal accumulation by Alyssum serpyllifolium subsp. malacitanum Rivas Goday (Brassicaceae) across different petrographic entities in South-Iberian ultramafic massifs: plant-soil relationships and prospects for phytomining

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Álvarez-López V, Prieto-Fernández Á, Cabello-Conejo M, Kidd P. 2016. Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants. Sci Total Environ. 548–549:370–379. doi:10.1016/j.scitotenv.2015.12.147.
  • Asensi A, Rodríguez N, Díez-Garretas B, Amils R. 2004. Nickel hyperaccumulation of some subspecies of Alyssum serpyllifolium (Brassicaceae) from ultramafic soils on the Iberian Peninsula. In: Boyd RS, Baker AJM, Proctor J, editors. Ultramafic rocks: their soils, vegetation and fauna. Proceedings of the Fourth International Conference on Serpentine Ecology; 2003 Apr 21–26. St Albans: Science Reviews. p. 263–265.
  • Assunção A, Bookum W, Nelissen H, Vooijs R, Schat H, Ernst W. 2003. Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol. 159(2):411–419. doi:10.1046/j.1469-8137.2003.00819.x.
  • Bani A, Imeri A, Echevarria G, Pavlova D, Reeves R, Morel J, Sulçe S. 2013. Nickel hyperaccumulation in the serpentine flora of Albania. Fresenius Environ Bull. 22(6):1792–1801.
  • Blanca G, Cabezudo B, Cueto M, Salazar C, Morales C. 2011. Flora vascular de Andalucía Oriental [Vascular flora of Eastern Andalusia]. Sevilla: Consejería de Medio Ambiente, Junta de Andalucía.
  • Brady K, Kruckeberg A, Bradshaw H Jr. 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst. 36(1):243–266. doi:10.1146/annurev.ecolsys.35.021103.105730.
  • Brooks R. 1983. Biological methods of prospecting for minerals. New York (NY): Wiley.
  • Brooks R, Morrison R, Reeves R, Dudley T, Akman Y. 1979. Hyperaccumulation of nickel by Alyssum linnaeus (Cruciferae). Proc R Soc Lond B Biol Sci. 203(1153):387–403. doi:10.1098/rspb.1979.0005.
  • Brooks R, Radford C. 1978. Nickel accumulation by European species of the genus Alyssum. Proc R Soc Lond B Biol Sci. 200:217–224. doi:10.1098/rspb.1978.0016.
  • Brooks R, Shaw S, Asensi A. 1981. Some observations on the ecology, metal uptake and nickel tolerance of Alyssum serpyllifolium subspecies from the Iberian Peninsula. Vegetatio. 45(3):183–188. doi:10.1007/BF00054673.
  • Burger A, Lichtscheidl I. 2019. Strontium in the environment: review about reactions of plants towards stable and radioactive strontium isotopes. Sci Total Environ. 653:1458–1512. doi:10.1016/j.scitotenv.2018.10.312.
  • de la Fuente V, Rodríguez N, Díez-Garretas B, Rufo L, Asensi A, Amils R. 2007. Nickel distribution in the hyperaccumulator Alyssum serpyllifolium Desf. spp. from the Iberian Peninsula. Plant Biosyst. 141(2):170–180. doi:10.1080/11263500701401422.
  • Díez Lázaro J, Kidd PS, Monterroso Martínez C. 2006. A phytogeochemical study of the Trás-os-Montes region (NE Portugal): possible species for plant-based soil remediation technologies. Sci Total Environ. 354(2–3):265–277. doi:10.1016/j.scitotenv.2005.01.001.
  • Freitas H, Prasad MNV, Pratas J. 2004. Analysis of serpentinophytes from north-east of Portugal for trace metal accumulation-relevance to the management of mine environment. Chemosphere. 54(11):1625–1642. doi:10.1016/j.chemosphere.2003.09.045.
  • Gálvez-Villamuela E, Hidalgo-Triana N, Pérez Latorre AV. 2021. Serpentine plant diversity and vegetation in a Mediterranean area (Sierra de Mijas, Southern Iberian Peninsula, Spain). Ann di Bot. 11:135–154. doi:10.13133/2239-3129/17015.
  • Ghaderian S, Mohtadi A, Rahiminejad R, Baker A. 2007. Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environ Pollut. 145(1):293–298. doi:10.1016/j.envpol.2006.03.016.
  • Gómez-Zotano J, Roman-Requena F, Thorne J. 2015. Attributes and roadblocks: a conservation assessment and policy review of the Sierra Bermeja, a mediterranean serpentine landscape. Nat Areas J. 35(2):328–343. doi:10.3375/043.035.0215.
  • Gupta D, Walther C. 2018. Behaviour of strontium in plants and the environment. Cham: Springer.
  • Hattori K, Guillot S. 2003. Volcanic fronts as a consequence of serpentinite dehydratation in the fore-arc mantle wedge. Geol. 31(6):525–528. doi:10.1130/0091-7613(2003)031<0525:VFFAAC>2.0.CO;2.
  • Instituto Geológico y Minero de España MAGNA 50. 1978. Mapa Geológico de España a escala 1:50.000 (2a Serie). Madrid: Ministerio de Ciencia e Innovación [accessed 2020 Jun 28]. http://info.igme.es/cartografiadigital/geologica/Magna50.aspx.
  • Kazakou E, Dimitrakopoulos P, Baker A, Reeves R, Troumbis A. 2008. Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev Camb Philos Soc. 83(4):495–508. doi:10.1111/j.1469-185X.2008.00051.x.
  • Keeling SM, Stewart RB, Anderson CW, Robinson BH. 2003. Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: implications for polymetallic phytomining and phytoremediation. Int J Phytoremediation. 5(3):235–244. doi:10.1080/713779223.
  • Kowalska J, Stryjewska E, Bystrzejewska-Piotrowska G, Lewandowski K, Tobiasz M, Pańdyna J, Golimowski J. 2012. Studies of plants useful in the re-cultivation of heavy metals-contaminated wasteland – a new hyperaccumulator of barium? Pol J Environ Stud. 21(2):401–405.
  • Krämer U. 2010. Metal hyperaccumulation in plants. Annu Rev Plant Biol. 61:517–534. doi:10.1146/annurev-arplant-042809-112156.
  • Li G, Hu N, Ding D, Zheng J, Liu Y, Wang Y, Nie X. 2011. Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China. Bull Environ Contam Toxicol. 86(6):646–652. doi:10.1007/s00128-011-0291-2.
  • Marschner H. 2016. Marschner’s Mineral Nutrition of Higher Plants. 3rd ed. San Diego (US): Academic Press.
  • Menezes de Sequeira E, Pinto da Silva A. 1992. Ecology of serpentinized areas of north-east Portugal. In: Roberts BA, Proctor J, editors. The ecology of areas with serpentinized rocks. Dordrecht: Springer. p. 169–197.
  • Mišljenović T, Jovanović S, Mihailović N, Gajić B, Tomović G, Baker A, Echevarria G, Jakovljević K. 2020. Natural variation of nickel, zinc and cadmium (hyper) accumulation in facultative serpentinophytes Noccaea kovatsii and N. praecox. Plant Soil. 447(1–2):475–495. doi:10.1007/s11104-019-04402-5.
  • Morais I, Campos J, Favas P, Pratas J, Pita F, Prasad M. 2015. Nickel accumulation by Alyssum serpyllifolium subsp. lusitanicum (Brassicaceae) from serpentine soils of Bragança and Morais (Portugal) ultramafic massifs: plant-soil relationships and prospects for phytomining. Aust J Bot. 63(2):17–30. doi:10.1071/BT14245.
  • Morishita T, Nakamura K, Shibuya T, Kumagai H, Sato T, Okino K, Sato H, Nauchi R, Hara K, Takamaru R. 2015. Petrology of peridotites and related gabbroic rocks around the Kairei hydrothermal field in the Central Indian Ridge. In: Ishibashi J, Okino K, Sunamura M, editors. Subseafloor biosphere linked to hydrothermal systems. Tokyo: Springer. p. 177–193.
  • Mota J, Garrido-Becerra J, Merlo M, Medina-Cazorla J, Sánchez-Gómez P. 2017. The edaphism: gypsum, dolomite and serpentine flora and vegetation. In: Loidi J, editors. The vegetation of the Iberian Peninsula. Plant and vegetation. Vol. 13. Cham: Springer. p. 277–354.
  • Mota-Merlo M, Martos V. 2021. Use of machine learning to establish limits in the classification of hyperac-cumulator plants growing on serpentine, gypsum and dolomite soils. Mediterr Bot. 42:e67609. doi:10.5209/mbot.67609.
  • Oliveras V, Galán G. 2006. Petrología y mineralogía de los xenolitos mantélicos del volcán la Banya del Boc (Girona) [Petrology and mineralogy of mantle xenoliths from La Banya del Boc volcano (Girona)]. Geogaceta. 40:107–110.
  • Ouzounidou G, Ciamporová M, Moustakas M, Karataglis S. 1995. Responses of maize (Zea mays L.) plants to copper stress. Exp Bot. 35(2):167–176. doi:10.1016/0098-8472(94)00049-B.
  • Pavlova D, Karadjova I. 2013. Toxic element profiles in selected medicinal plants growing on serpentines in Bulgaria. Biol Trace Elem Res. 156(1–3):288–297. doi:10.1007/s12011-013-9848-8.
  • Pérez Latorre AV, Hidalgo-Triana N, Cabezudo B. 2013. Composition, ecology and conservation of the South-Iberian serpentine flora in the context of the Mediterranean basin. Anal Jard Bot Madr. 70(1):62–71. doi:10.3989/ajbm.2334.
  • Pérez Latorre AV, Navas P, Navas D, Gil Y, Cabezudo B. 1998. Datos sobre la flora y vegetación de la Serranía de Ronda (Málaga, España) [Data on the flora and vegetation of the Serranía de Ronda (Malaga, Spain)]. ABM. 23:149–191. doi:10.24310/abm.v23i0.8557.
  • Pollard A, McCartha G, Quintela-Sabarís C, Flynn T, Sobczyk M, Smith JAC. 2021. Intraspecific variation in nickel tolerance and hyperaccumulation among serpentine and limestone populations of Odontarrhena serpyllifolia (Brassicaceae: Alysseae) from the Iberian Peninsula. Plants. 10(4):800. doi:10.3390/plants10040800.
  • Pons J, Leyva C, Rodríguez G, Ramírez M. 2000. Características físico-químicas de las dunitas serpentinizadas de la región de Moa-Baracoa (Zonas Amores y Miraflores) [Physico-chemical characteristics of the serpentine dunites of the Moa-Baracoa region (Amores and Miraflores Zones)]. Min Geolog. 17(3–4):95–99.
  • Prasad MNV, Freitas HMO. 1999. Feasible biotechnological and bioremediation strategies for serpentine soils and mine spoils. Electron J Biotechnol. 2:36–50. doi:10.4067/S0717-34581999000100003.
  • Rajakaruna N. 2004. The edaphic factor in the origin of species. Int Geol Rev. 46(5):471–478. doi:10.2747/0020-6814.46.5.471.
  • Reeves RD, Baker AJM, Tanguy J, Erskine PD, Echevarria G, van der Ent A. 2018. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 218(2):407–411. doi:10.1111/nph.14907.
  • Rivas-Goday S. 1973. Plantas serpentinícolas y dolomitícolas del sur de España [Serpentine and dolomite plants of southern Spain]. Bol Soc Brot. 47(2):161–178.
  • Rivas-Martínez S, Díaz ET, Fernández-González F, Izco J, Loidi J, Lousä M, Penas A. 2002. Vascular plant communities of Spain and Portugal. Addenda to the syntaxonomical checklist of 2001. Itinera Geobot. 15:5-922. Madrid: Centro de Investigaciones Fitosociológicas [accessed 2021 Aug 30]. https://www.globalbioclimatics.org/book/addenda/addenda2_22.htm.
  • Rodríguez N, Menéndez N, Tornero J, Amils R, de la Fuente V. 2005. Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization. New Phytol. 165(3):781–789. doi:10.1111/j.1469-8137.2004.01264.x.
  • Romero-Freire A, Olmedo-Cobo J, Gómez-Zotano J. 2018. Elemental concentration in serpentinitic soils over ultramafic bedrock in Sierra Bermeja (southern Spain). Minerals. 8(10):447. doi:10.3390/min8100447.
  • Rowell D. 2014. Soil science: methods & applications. London: Routledge.
  • Rue M, Paul ALD, Echevarria G, van der Ent A, Simonnot M-O, Morel JL. 2020. Uptake, translocation and accumulation of nickel and cobalt in Berkheya coddii, a ‘metal crop’ from South Africa. Metallomics. 12(8):1278–1289. doi:10.1039/d0mt00099j.
  • Rufo L, Rodríguez N, de la Fuente V. 2005. Análisis comparado de metales en suelos y plantas de la Sierra Bermeja [Comparative analysis of metals in soils and plants of the Sierra Bermeja]. In: Jiménez-Ballesta R, Álvarez González AM, editors. II Simposio Nacional de Control de la Degradación de Suelos: Comunicaciones; 2005 Jul 6–8. Madrid: Universidad Autónoma de Madrid. p. 197–201.
  • Shabala S. 2013. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot. 112(7):1209–1221. doi:10.1093/aob/mct205.
  • Sheoran V, Sheoran AS, Poonia P. 2010. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol. 41(2):168–214. doi:10.1080/10643380902718418.
  • Španiel S, Kempa M, Salmerón-Sánchez E, Fuertes-Aguilar J, Mota JF, Al-Shehbaz IA, German DA, Olšavská K, Šingliarová B, Zozomová-Lihová J, et al. 2015. AlyBase: database of names, chromosome numbers, and ploidy levels of Alysseae (Brassicaceae), with a new generic concept of the tribe. Plant Syst Evol. 301(10):2463–2491. doi:10.1007/s00606-015-1257-3.
  • Sterckeman T, Cazes Y, Gonneau C, Sirguey C. 2017. Phenotyping 60 populations of Noccaea caerulescens provides a broader knowledge of variation in traits of interest for phytoextraction. Plant Soil. 418(1–2):523–540. doi:10.1007/s11104-017-3311-0.
  • van der Ent A, Baker A, Reeves R, Chaney R, Anderson C, Meech J, Erskine P, Simonnot M, Vaughan J, Morel J, et al. 2015. Agromining: farming for metals in the future? Environ Sci Technol. 49(8):4773–4780. doi:10.1021/es506031u.
  • van der Ent A, Baker A, Reeves R, Pollard A, Schat H. 2013. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil. 362(1–2):319–334. doi:10.1007/s11104-012-1287-3.
  • van der Ent A, Echevarria G, Pollard A, Erskine P. 2019. X-ray fluorescence ionomics of herbarium collections. Sci Rep. 9(1):4746. doi:10.1038/s41598-019-40050-6.
  • Verbruggen N, Hermans C, Schat H. 2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 181(4):759–776. doi:10.1111/j.1469-8137.2008.02748.x.
  • Vithanage M, Rajapaksha AU, Oze C, Rajakaruna N, Dissanayake CB. 2014. Metal release from serpentine soils in Sri Lanka. Environ Monit Assess. 186(6):3415–3429. doi:10.1007/s10661-014-3626-8.
  • Wang X, Shan T, Pang S. 2018. Phytoremediation potential of Saccharina japonica and Sargassum horneri (Phaeophyceae): biosorption study of strontium. Bull Environ Contam Toxicol. 101(4):501–505. doi:10.1007/s00128-018-2435-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.