1,064
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Mechanistic insight on boron-mediated toxicity in plant vis-a-vis its mitigation strategies: a review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • De Abreu Neto JB, Hurtado-Perez MC, Wimmer MA, Frei M. 2017. Genetic factors underlying boron toxicity tolerance in rice: genome-wide association study and transcriptomic analysis. J Exp Bot. 68(3):687–700. doi:10.1093/jxb/erw423.
  • Adak N, Tozlu I, Gubbuk H. 2018. Influence of different soilless substrates to morpho-physiological characteristics and yield relations in strawberries. Erwerbs-Obstbau. 60(4):341–348. doi:10.1007/s10341-018-0382-x.
  • Ahmad W, Zia MH, Malhi SS, Niaz A, Ullah S. 2012. Boron deficiency in soils and crops: a review. Crop Plant. 2012:65–97.
  • Ahmed N, Abid M, Ahmad F, Ullah MA, Javaid Q, Ali MA. 2011. Impact of boron fertilization on dry matter production and mineral constitution of irrigated cotton. Pak J Bot. 43(6):2903–2910.
  • Al-Huqail AA, Khan MN, Ali HM, Siddiqui MH, Al-Huqail AA, AlZuaibr FM, Al-Muwayhi MA, Marraiki N, Al-Humaid LA. 2020. Exogenous melatonin mitigates boron toxicity in wheat. Ecotoxicol Environ Saf. 201:110822. doi:10.1016/j.ecoenv.2020.110822.
  • An J, Liu Y, Yang C, Zhou G, Wei Q, Peng S. 2012. Isolation and expression analysis of CiNIP5, a citrus boron transport gene involved in tolerance to boron deficiency. Sci Hortic. 142:149–154. doi:10.1016/j.scienta.2012.05.013.
  • Archana , Pandey N. 2016. Physiological and biochemical effects of boron toxicity in mustard during the seedling stage. J Plant Nutr. 39(6):820–827. doi:10.1080/01904167.2015.1047523.
  • Ardic M, Sekmen AH, Tokur S, Ozdemir F, Turkan I. 2009. Antioxidant responses of chickpea plants subjected to boron toxicity. Plant Biol. 11(3):328–338. doi:10.1111/j.1438-8677.2008.00132.x.
  • Arora S, Chahal DS. 2005. Toxic effect of high boron content in soils on clover (Trifolium alexandrinum). Environ Ecol. 23:255–257.
  • Bastías E, Alcaraz-López C, Bonilla I, Martínez-Ballesta MC, Bolaños L, Carvajal M. 2010. Interactions between salinity and boron toxicity in tomato plants involve apoplastic calcium. J Plant Physiol. 167(1):54–60. doi:10.1016/j.jplph.2009.07.014.
  • Ben-Gal A, Shani U. 2002. Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress. Plant Soil. 247(2):211–221. doi:10.1023/A:1021556808595.
  • Bennett RG, Ribalta FM, Pazos-Navarro M, Leonforte A, Croser JS. 2017. Discrimination of boron tolerance in Pisum sativum L. genotypes using a rapid, high-throughput hydroponic screen and precociously germinated seed grown under far-red enriched light. Plant Methods. 13(1):70. doi:10.1186/s13007-017-0221-3.
  • Brdar-Jokanović M. 2020. Boron toxicity and deficiency in agricultural plants. IJMS. 21(4):1424. doi:10.3390/ijms21041424.
  • Brinton WF, Evans E, Blewett C. 2008. Extractability, plant yield and toxicity thresholds for boron in compost. Compost Sci Util. 16(2):114–118. doi:10.1080/1065657X.2008.10702365.
  • Camacho-Cristóbal JJ, Navarro-Gochicoa MT, Rexach J, González-Fontes A, Herrera-Rodríguez MB. 2018. Plant response to boron deficiency and boron use efficiency in crop plants. In: Plant macronutrient use efficiency molecular and genomic perspectives in crop plants. Elsevier; p. 109–121.
  • Cañon P, Aquea F, Rodríguez-Hoces de la Guardia A, Arce-Johnson P. 2013. Functional characterization of Citrus macrophylla BOR1 as a boron transporter. Physiol Plant. 149(3):329–339. doi:10.1111/ppl.12037.
  • Cartwright B, Zarcinas BA, Mayfield AH. 1984. Toxic concentrations of boron in a red-brown earth at Gladstone, South Australia. Soil Res. 22(3):261–272.doi:10.1071/SR9840261.
  • Çelik H, Turan MA, Aşık BB, Öztüfekçi S, Katkat AV. 2019. Effects of soil-applied materials on the dry weight and boron uptake of maize shoots (Zea mays L.) under high boron conditions. Commun Soil Sci Plant Anal. 50(7):811–826. doi:10.1080/00103624.2019.1589477.
  • Chatterjee M, Tabi Z, Galli M, Malcomber S, Buck A, Muszynski M, Gallavotti A. 2014. The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility. Plant Cell. 26(7):2962–2977. doi:10.1105/tpc.114.125963.
  • Chetelat B, Gaillardet J, Freydier R, Négrel P. 2005. Boron isotopes in precipitation: experimental constraints and field evidence from French Guiana. Earth Planet Sci Lett. 235(1–2):16–30. doi:10.1016/j.epsl.2005.02.014.
  • Choi E-Y, Park H-I, Ju J-H, Yoon Y-H. 2015. Boron availability alters its distribution in plant parts of tomato. Hortic Environ Biotechnol. 56(2):145–151. doi:10.1007/s13580-015-0044-y.
  • Dal Ferro B, Smith M. 2007. Global onshore and offshore water production. Oil Gas Rev OTC Ed.
  • Day S, Çikili Y, Aasim M. 2017. Screening of three safflower (Carthamus tinctorius L.) cultivars under boron stress. Acta Sci Pol Hortorum Cultus. 16(5):109–116. doi:10.24326/asphc.2017.5.11.
  • Dilek Tepe H, Aydemir T. 2017. Effect of boron on antioxidant response of two lentil (Lens culinaris) cultivars. Commun Soil Sci Plant Anal. 48(16):1881–1894. doi:10.1080/00103624.2017.1407428.
  • Ehsan-Ul-Haq M, Kausar R, Akram M, Shahzad SM. 2009. Is boron required to improve rice growth and yield in saline environment. Pak J Bot. 41(3):1339–1350.
  • El-Hamdaoui A, Redondo-Nieto M, Rivilla R, Bonilla I, Bolanos L. 2003. Effects of boron and calcium nutrition on the establishment of the Rhizobium leguminosarum–pea (Pisum sativum) symbiosis and nodule development under salt stress. Plant Cell Environ. 26(7):1003–1011. doi:10.1046/j.1365-3040.2003.00995.x.
  • El-Hamdaoui A, Redondo-Nieto M, Torralba B, Rivilla R, Bonilla I, Bolaños L. 2003. Influence of boron and calcium on the tolerance to salinity of nitrogen-fixing pea plants. Plant Soil. 251(1):93–103. doi:10.1023/A:1022980330718.
  • El-Shazoly RM, Metwally AA, Hamada AM. 2019. Salicylic acid or thiamin increases tolerance to boron toxicity stress in wheat. J Plant Nutr. 42(7):702–722. doi:10.1080/01904167.2018.1549670.
  • Elbehiry F, Elbasiouny H, El-Henawy A. 2017. Boron: spatial distribution in an area of north Nile Delta, Egypt. Commun Soil Sci Plant Anal. 48(3):294–306. doi:10.1080/00103624.2016.1269795.
  • Eraslan F, Inal A, Gunes A, Alpaslan M. 2007. Boron toxicity alters nitrate reductase activity, proline accumulation, membrane permeability, and mineral constituents of tomato and pepper plants. J Plant Nutr. 30(6):981–994. doi:10.1080/15226510701373221.
  • Esim N, Atici O. 2013. Nitric oxide alleviates boron toxicity by reducing oxidative damage and growth inhibition in maize seedlings (“Zea mays” L.). Aust J Crop Sci. 7(8):1085.
  • Fang K, Zhang W, Xing Y, Zhang Q, Yang L, Cao Q, Qin L. 2016. Boron toxicity causes multiple effects on Malus domestica pollen tube growth. Front Plant Sci. 7:208. doi:10.3389/fpls.2016.00208.
  • Fariduddin Q, Hayat S, Ahmad A. 2003. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthesis. 41(2):281–284. doi:10.1023/B:PHOT.0000011962.05991.6c.
  • Farooq MA, Saqib ZA, Akhtar J, Bakhat HF, Pasala R-K, Dietz K-J. 2019. Protective role of silicon (Si) against combined stress of salinity and boron (B) toxicity by improving antioxidant enzymes activity in rice. Silicon. 11(4):2193–2197. doi:10.1007/s12633-015-9346-z.
  • Fitzpatrick KL, Reid RJ. 2009. The involvement of aquaglyceroporins in transport of boron in barley roots. Plant Cell Environ. 32(10):1357–1365. doi:10.1111/j.1365-3040.2009.02003.x.
  • Gaillardet J, Lemarchand D. 2018. Boron in the weathering environment. In: Advances in isotope geochemistry. Cham, Germany; p. 163–188.
  • Gunes A, Inal A, Bagci EG, Coban S, Pilbeam DJ. 2007. Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinacia oleracea L.) grown under B toxicity. Sci Hortic. 113(2):113–119. doi:10.1016/j.scienta.2007.03.009.
  • Gunes A, Inal A, Bagci EG, Pilbeam DJ. 2007. Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant Soil. 290(1–2):103–114. doi:10.1007/s11104-006-9137-9.
  • Hamurcu M, Sekmen AH, Turkan I, Gezgin S, Demiral T, Bell RW. 2013. Induced anti-oxidant activity in soybean alleviates oxidative stress under moderate boron toxicity. Plant Growth Regul. 70(3):217–226. doi:10.1007/s10725-013-9793-8.
  • Han S, Tang N, Jiang HX, Yang LT, Li Y, Chen LS. 2009. CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci. 176(1):143–153. doi:10.1016/j.plantsci.2008.10.004.
  • Hanaoka H, Uraguchi S, Takano J, Tanaka M, Fujiwara T. 2014. OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions. Plant J. 78(5):890–902. doi:10.1111/tpj.12511.
  • Hao X, Wu Z, Wang X, Song B, Zhou J. 2020. Leaf photosynthesis and tissue damage response to high boron stress in sugar beet seedlings. J Agric Resour Environ. 37(5):753–760.
  • Hasnain A, Mahmood S, Akhtar S, Malik SA, Bashir N. 2011. Tolerance and toxicity levels of boron in mung bean (Vigna radiata (L.) Wilczek) cultivars at early growth stages. Pak J Bot. 43(2):1119–1125.
  • Hua T, Zhang R, Sun H, Liu C. 2020. Alleviation of boron toxicity in plants: mechanisms and approaches. Crit Rev Environ Sci Technol. 51(24):2975–3015. doi:10.1080/10643389.2020.1807451.
  • Huang J-H, Cai Z-J, Wen S-X, Guo P, Ye X, Lin G-Z, Chen L-S. 2014. Effects of boron toxicity on root and leaf anatomy in two citrus species differing in boron tolerance. Trees. 28(6):1653–1666. doi:10.1007/s00468-014-1075-1.
  • Huang L, Ye Z, Bell RW, Dell B. 2005. Boron nutrition and chilling tolerance of warm climate crop species. Ann Bot. 96(5):755–767. doi:10.1093/aob/mci228.
  • Inal A, Gunes A. 2008. Interspecific root interactions and rhizosphere effects on salt ions and nutrient uptake between mixed grown peanut/maize and peanut/barley in original saline-sodic-boron toxic soil. J Plant Physiol. 165(5):490–503. doi:10.1016/j.jplph.2007.01.016.
  • Inal A, Pilbeam DJ, Gunes A. 2009. Silicon increases tolerance to boron toxicity and reduces oxidative damage in barley. J Plant Nutr. 32(1):112–128. doi:10.1080/01904160802533767.
  • Jefferies SP, Pallotta MA, Paull JG, Karakousis A, Kretschmer JM, Manning S, Islam A, Langridge P, Chalmers KJ. 2000. Mapping and validation of chromosome regions conferring boron toxicity tolerance in wheat (Triticum aestivum). Theor Appl Genet. 101(5–6):767–777. doi:10.1007/s001220051542.
  • Karakousis A, Barr AR, Kretschmer JM, Manning S, Jefferies SP, Chalmers KJ, Islam AKM, Langridge P. 2003. Mapping and QTL analysis of the barley population Clipper × Sahara. Aust J Agric Res. 54(12):1137–1140. doi:10.1071/AR02180.
  • Kasajima I, Fujiwara T. 2007. Identification of novel Arabidopsis thaliana genes which are induced by high levels of boron. Plant Biotechnol. 24(3):355–360. doi:10.5511/plantbiotechnology.24.355.
  • Kayıhan C, Öz MT, Eyidoğan F, Yücel M, Öktem HA. 2017. Physiological, biochemical, and transcriptomic responses to boron toxicity in leaf and root tissues of contrasting wheat cultivars. Plant Mol Biol Rep. 35(1):97–109. doi:10.1007/s11105-016-1008-9.
  • Kaya C, Akram NA, Ashraf M. 2018. Kinetin and indole acetic acid promote antioxidant defense system and reduce oxidative stress in maize (Zea mays L.) plants grown at boron toxicity. J Plant Growth Regul. 37(4):1258–1266. doi:10.1007/s00344-018-9827-6.
  • Kaya C, Higgs D, Ashraf M, Alyemeni MN, Ahmad P. 2019. Integrative roles of nitric oxide and hydrogen sulfide in melatonin‐induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. Physiol Plant. 168(2):12976. doi:10.1111/ppl.12976.
  • Kaya C, Sarioğlu A, Akram NA, Ashraf M. 2019. Thiourea-mediated nitric oxide production enhances tolerance to boron toxicity by reducing oxidative stress in bread wheat (Triticum aestivum L.) and durum wheat (Triticum durum Desf.) plants. J Plant Growth Regul. 38(3):1094–1109. doi:10.1007/s00344-019-09916-x.
  • Kaya C, Sarıoğlu A, Ashraf M, Alyemeni MN, Ahmad P. 2020. Gibberellic acid-induced generation of hydrogen sulfide alleviates boron toxicity in tomato (Solanum lycopersicum L.) plants. Plant Physiol Biochem. 153:53–63. doi:10.1016/j.plaphy.2020.04.038.
  • Kaya C, Tuna AL, Yokaş I. 2009. The role of plant hormones in plants under salinity stress. In: Athar M, Ashraf M, Ozturk HR, editors. Salin water stress. Dordrecht: Springer; p. 45–50.
  • Keleş Y, Ergün N, Öncel I. 2011. Antioxidant enzyme activity affected by high boron concentration in sunflower and tomato seedlings. Commun Soil Sci Plant Anal. 42(2):173–183. doi:10.1080/00103624.2011.535068.
  • Khandekar S, Leisner S. 2011. Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress. J Plant Physiol. 168(7):699–705. doi:10.1016/j.jplph.2010.09.009.
  • Klee RJ, Graedel TE. 2004. Elemental cycles: a status report on human or natural dominance. Annu Rev Environ Resour. 29(1):69–107. doi:10.1146/annurev.energy.29.042203.104034.
  • Koohkan H, Maftoun M. 2015. Effect of nitrogen on the alleviation of boron toxicity in rice (Oryza sativa L.). J Plant Nutr. 38(9):1323–1335. doi:10.1080/01904167.2014.991035.
  • Kumar A, Nayak S, Ngangkham U, Sah RP, Lal MK, Tp A, Behera S, Swain P, Behera L, Sharma S. 2021. A single nucleotide substitution in the SPDT transporter gene reduced phytic acid and increased mineral bioavailability from Rice grain (Oryza sativa L.). J Food Biochem. 45(7):e13822. doi:10.1111/jfbc.13822.
  • Kumar A, Sahu C, Panda PA, Biswal M, Sah RP, Lal MK, Baig MJ, Swain P, Behera L, Chattopadhyay K, et al. 2020. Phytic acid content may affect starch digestibility and glycemic index value of rice (Oryza sativa L.). J Sci Food Agric. 100(4):1598–1607. doi:10.1002/jsfa.10168.
  • Kumar A, Singh B, Raigond P, Sahu C, UN, Mishra, Sharma S, Kumar Lal M, Mishra UN, Sharma S, Lal MK. 2021. Phytic acid: blessing in disguise, a prime compound required for both plant and human nutrition. Food Res Int. 142:110193. doi:10.1016/j.foodres.2021.110193.
  • Kumar K, Mosa KA, Chhikara S, Musante C, White JC, Dhankher OP. 2014. Two rice plasma membrane intrinsic proteins, OsPIP2;4 and OsPIP2;7, are involved in transport and providing tolerance to boron toxicity. Planta. 239(1):187–198. doi:10.1007/s00425-013-1969-y.
  • Lacey A, Davies S. 2009. Boron toxicity in WA soils.
  • Landi M, Margaritopoulou T, Papadakis IE, Araniti F. 2019. Boron toxicity in higher plants: an update. Planta. 250(4):1011–1032. doi:10.1007/s00425-019-03220-4.
  • Leaungthitikanchana S, Fujibe T, Tanaka M, Wang S, Sotta N, Takano J, Fujiwara T. 2013. Differential expression of three BOR1 genes corresponding to different genomes in response to boron conditions in hexaploid wheat (Triticum aestivum L.). Plant Cell Physiol. 54(7):1056–1063. doi:10.1093/pcp/pct059.
  • Lemarchand D, Gaillardet J, Lewin E, Allègre CJ. 2000. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature. 408(6815):951–954. doi:10.1038/35050058.
  • Lucho-Constantino CA, Prieto-García F, LMD, Razo, Rodríguez-Vázquez R, Poggi-Varaldo HM. 2005. Chemical fractionation of boron and heavy metals in soils irrigated with wastewater in central Mexico. Agric Ecosyst Environ. 108(1):57–71. doi:10.1016/j.agee.2004.12.013.
  • Lv Q, Wang L, Wang J-Z, Li P, Chen Y-L, Du J, He Y-K, Bao F. 2017. SHB1/HY1 alleviates excess boron stress by increasing BOR4 expression level and maintaining boron homeostasis in Arabidopsis roots. Front Plant Sci. 8:790. doi:10.3389/fpls.2017.00790.
  • Macho-Rivero MÁ, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, Müller M, Munné-Bosch S, González-Fontes A. 2017. Abscisic acid and transpiration rate are involved in the response to boron toxicity in Arabidopsis plants. Physiol Plant. 160(1):21–32. doi:10.1111/ppl.12534.
  • Macho-Rivero MA, Herrera-Rodríguez M. B¿a, Brejcha R, Schäffner AR, Tanaka N, Fujiwara T, González-Fontes A, Camacho-Cristóbal JJ. 2018. Boron toxicity reduces water transport from root to shoot in Arabidopsis plants. Evidence for a reduced transpiration rate and expression of major PIP aquaporin genes. Plant Cell Physiol. 59(4):841–849. doi:10.1093/pcp/pcy026.
  • Matthes MS, Robil JM, McSteen P. 2020. From element to development: the power of the essential micronutrient boron to shape morphological processes in plants. J Exp Bot. 71(5):1681–1693. doi:10.1093/jxb/eraa042.
  • Mehlich A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal. 15(12):1409–1416. doi:10.1080/00103628409367568.
  • Metwally AM, Radi AA, El-Shazoly RM, Hamada AM. 2018. The role of calcium, silicon and salicylic acid treatment in protection of canola plants against boron toxicity stress. J Plant Res. 131(6):1015–1028. doi:10.1007/s10265-018-1008-y.
  • Mosa KA, Kumar K, Chhikara S, Musante C, White JC, Dhankher OP. 2016. Enhanced boron tolerance in plants mediated by bidirectional transport through plasma membrane intrinsic proteins. Sci Rep. 6(1):21640–21614. doi:10.1038/srep21640.
  • Moussa HR, Algamal SMA. 2017. Does exogenous application of melatonin ameliorate boron toxicity in spinach plants? Int J Veg Sci. 23(3):233–245. doi:10.1080/19315260.2016.1243184.
  • Moustafa-Farag M, Almoneafy A, Mahmoud A, Elkelish A, Arnao MB, Li L, Ai S. 2020. Melatonin and its protective role against biotic stress impacts on plants. Biomolecules. 10(1):1–12.
  • Nable RO, Bañuelos GS, Paull JG. 1997. Boron toxicity. Plant Soil. 193(2):181–198. doi:10.1023/A:1004272227886.
  • Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T. 2007. Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell. 19(8):2624–2635. doi:10.1105/tpc.106.049015.
  • Nasim M, Rengel Z, Aziz T, Regmi BD, Saqib M. 2015. Boron toxicity alleviation by zinc application in two barley cultivars differing in tolerance to boron toxicity. Pak J Agri Sci. 52(1):151–158.
  • Nikinmaa E, Hölttä T, Hari P, Kolari P, Mäkelä A, Sevanto S, Vesala T. 2013. Assimilate transport in phloem sets conditions for leaf gas exchange. Plant Cell Environ. 36(3):655–669. doi:10.1111/pce.12004.
  • Ok SS, Akay A. 2016. The effects of boron mining on boron content of soil-sediment and plants. Int J Innov Res Eng Manage. 3(5):454–457.
  • Onthong J, Yoajui N, Kaewsichan L. 2011. Alleviation of plant boron toxicity by using water to leach boron from soil contaminated by wastewater from rubber wood factories. Sci Asia. 37(4):314–319. doi:10.2306/scienceasia1513-1874.2011.37.314.
  • Pang Y, Li L, Ren F, Lu P, Wei P, Cai J, Xin L, Zhang J, Chen J, Wang X. 2010. Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genomics. 37(6):389–397. doi:10.1016/S1673-8527(09)60057-6.
  • Papadakis IE, Dimassi KN, Bosabalidis AM, Therios IN, Patakas A, Giannakoula A. 2004. Boron toxicity in “Clementine” mandarin plants grafted on two rootstocks. Plant Sci. 166(2):539–547. doi:10.1016/j.plantsci.2003.10.027.
  • Papadakis IE, Tsiantas PI, Tsaniklidis G, Landi M, Psychoyou M, Fasseas C. 2018. Changes in sugar metabolism associated to stem bark thickening partially assist young tissues of Eriobotrya japonica seedlings under boron stress. J Plant Physiol. 231:337–345. doi:10.1016/j.jplph.2018.10.012.
  • Park H, Schlesinger WH. 2002. Global biogeochemical cycle of boron. Global Biogeochem Cycles. 16(4):20–1–20-11. doi:10.1029/2001GB001766.
  • Pérez-Castro R, Kasai K, Gainza-Cortés F, Ruiz-Lara S, Casaretto JA, Peña-Cortés H, Tapia J, Fujiwara T, González E. 2012. VvBOR1, the grapevine ortholog of AtBOR1, encodes an efflux boron transporter that is differentially expressed throughout reproductive development of Vitis vinifera L. Plant Cell Physiol. 53(2):485–494.
  • Rámila CDP, Leiva ED, Bonilla CA, Pastén PA, Pizarro GE. 2015. Boron accumulation in Puccinellia frigida, an extremely tolerant and promising species for boron phytoremediation. J Geochemical Explor. 150:25–34. doi:10.1016/j.gexplo.2014.12.020.
  • Reid R. 2007. Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. Plant Cell Physiol. 48(12):1673–1678. doi:10.1093/pcp/pcm159.
  • Reid R. 2014. Understanding the boron transport network in plants. Plant Soil. 385(1–2):1–13. doi:10.1007/s11104-014-2149-y.
  • Reid RJ, Hayes JE, Post A, Stangoulis JCR, Graham RD. 2004. A critical analysis of the causes of boron toxicity in plants. Plant, Cell Environ. 27(11):1405–1414. doi:10.1111/j.1365-3040.2004.01243.x.
  • Riaz M, Kamran M, El-Esawi MA, Hussain S, Wang X. 2021. Boron-toxicity induced changes in cell wall components, boron forms, and antioxidant defense system in rice seedlings. Ecotoxicol Environ Saf. 216:112192. doi:10.1016/j.ecoenv.2021.112192.
  • Rodriguez-Espinosa PF, Sabarathinam C, Ochoa-Guerrero KM, Martínez-Tavera E, Panda B. 2020. Geochemical evolution and boron sources of the groundwater affected by urban and volcanic activities of Puebla valley, south-central Mexico. J Hydrol. 584:124613. doi:10.1016/j.jhydrol.2020.124613.
  • Saleem M, Khanif YM, Fauziah I, Samsuri AW, Hafeez B. 2011. Importance of boron for agriculture productivity: a review. Int Res J Agric Sci Soil Sci. 1(8):293–300.
  • Sarafi E, Tsouvaltzis P, Chatzissavvidis C, Siomos A, Therios I. 2017. Melatonin and resveratrol reverse the toxic effect of high boron (B) and modulate biochemical parameters in pepper plants (Capsicum annuum L.). Plant Physiol Biochem. 112:173–182. doi:10.1016/j.plaphy.2016.12.018.
  • Schlesinger WH, Vengosh A. 2016. Global boron cycle in the anthropocene. Global Biogeochem Cycles. 30(2):219–230. doi:10.1002/2015GB005266.
  • Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD, Langridge P, Sutton T. 2010. Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol. 153(4):1706–1715. doi:10.1104/pp.110.158832.
  • Seth K, Aery NC. 2014. Effect of boron on the contents of chlorophyll, carotenoid, phenol and soluble leaf protein in mung bean, Vigna radiata (L.) Wilczek. Proc Natl Acad Sci Sect B Biol Sci. 84(3):713–719. doi:10.1007/s40011-013-0293-4.
  • Shah A, Wu X, Ullah A, Fahad S, Muhammad R, Yan L, Jiang C. 2017. Deficiency and toxicity of boron: alterations in growth, oxidative damage and uptake by citrange orange plants. Ecotoxicol Environ Saf. 145:575–582. doi:10.1016/j.ecoenv.2017.08.003.
  • Shapira OR, Israeli Y, Shani URI, Schwartz A. 2013. Salt stress aggravates boron toxicity symptoms in banana leaves by impairing guttation. Plant Cell Environ. 36(2):275–287. doi:10.1111/j.1365-3040.2012.02572.x.
  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Singh Sidhu GP, Bali AS, Handa N, Kapoor D, Yadav P, Khanna K, et al. 2020. Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul. 39(2):509–531. doi:10.1007/s00344-019-10018-x.
  • Siddiqui MH, Al-Whaibi MH, Sakran AM, Ali HM, Basalah MO, Faisal M, Alatar A, Al-Amri AA. 2013. Calcium-induced amelioration of boron toxicity in radish. J Plant Growth Regul. 32(1):61–71. doi:10.1007/s00344-012-9276-6.
  • Silva DH, da Rossi ML, Boaretto AE, Nogueira N. d L, Muraoka T. 2008. Boron affects the growth and ultrastructure of castor bean plants. Sci Agric. 65(6):659–664. doi:10.1590/S0103-90162008000600014.
  • Sims JT, Johnson GV. 2018. Micronutrient soil tests. In: Micronutrition. Wisconsin (USA): Wiley; p. 427–476.
  • Singh AL, Chaudhari V, Basu MS. 2007. Boron deficiency and its nutrition of groundnut in India. In: Xu F, Goldbach H, Brown PH, Bell RW, Fujiwara T, Hunt CD, Goldb S, Shi L, editors. Advances in plant and animal boron nutrition. Dordrecht (the Netherland): Springer Publications; p. 149–162.
  • Sinha P, Dube BK, Singh MV, Chatterjee C. 2006. Effect of boron stress on yield, biochemical parameters and quality of tomato. Indian J Hortic. 63(1):39–43.
  • Sonmez O, Aydemir SI, Kaya CI. 2009. Mitigation effects of mycorrhiza on boron toxicity in wheat (Triticum durum) plants. New Zeal J Crop Hortic Sci. 37(2):99–104. doi:10.1080/01140670909510254.
  • Sotiropoulos TE, Therios IN, Dimassi KN. 2006. Seasonal accumulation and distribution of nutrient elements in fruit of kiwifruit vines affected by boron toxicity. Aust J Exp Agric. 46(12):1639–1644. doi:10.1071/EA05081.
  • Souza ECA, Rosolem CA, Coutinho ELM. 1997. Sunflower response to boron as affected by liming. In: Boron in soils and plants. Dordrecht (the Netherland): Springer; p. 23–27.
  • Stiles AR, Liu C, Kayama Y, Wong J, Doner H, Funston R, Terry N. 2011. Evaluation of the boron tolerant grass, Puccinellia distans, as an initial vegetative cover for the phytorestoration of a boron-contaminated mining site in Southern California. Environ Sci Technol. 45(20):8922–8927. doi:10.1021/es200879a.
  • Sulus S, Leblebici S. 2020. The effect of boric acid application on ecophysiological characteristics of safflower varieties (Carthamus tinctorius L.). Fresenius Environ Bull. 29:8177–8185.
  • Sürücü A, Günal H, Acir N. 2013. Importance of spatial distribution in reclamation of boron toxic soils from Central Anatolia of Turkey. Fresen Environ Bull. 22:3111–3122.
  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T. 2002. Arabidopsis boron transporter for xylem loading. Nature. 420(6913):337–340. doi:10.1038/nature01139.
  • Tanaka M, Fujiwara T. 2008. Physiological roles and transport mechanisms of boron: perspectives from plants. Pflugers Arch. 456(4):671–677. doi:10.1007/s00424-007-0370-8.
  • Tavallali V. 2017. Interactive effects of zinc and boron on growth, photosynthesis, and water relations in pistachio. J Plant Nutr. 40(11):1588–1603. doi:10.1080/01904167.2016.1270308.
  • Tiwari RK, Lal MK, Kumar R, Chourasia KN, Naga KC, Kumar D, Das SK, Zinta G. 2021. Mechanistic insights on melatonin-mediated drought stress mitigation in plants. Physiol Plant. 172(2):1212–1226. doi:10.1111/ppl.13307.
  • Torun A, Gültekin I, Kalayci M, Yilmaz A, Eker SI, Cakmak I. 2001. Effects of zinc fertilization on grain yield and shoot concentrations of zinc, boron, and phosphorus of 25 wheat cultivars grown on a zinc-deficient and boron-toxic soil. J Plant Nutr. 24(11):1817–1829. doi:10.1081/PLN-100107314.
  • Ur Rehman A, Qamar R, Hussain A, Sardar H, Sarwar N, Javeed HMR. 2020. Cotton growth, yield, quality and boron distribution as affected by soil-applied boron in calcareous saline soil. bioRxiv.
  • US Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. Agric Handb. 60:83–100.
  • Vargas A, Arias F, Serrano E, Arias O. 2007. Toxicidad de boro en plantaciones de banano (“Musa” AAA) en Costa Rica. Agron Costarric Rev Ciencias Agríc. 31(2):21–29.
  • Wang H, Tang S, Zhi H, Xing L, Zhang H, Tang C, Wang E, Zhao M, Jia G, Feng B, et al. 2021. The boron transporter SiBOR1 functions in cell wall integrity, cellular homeostasis, and panicle development in foxtail millet. Crop J. doi:10.1016/j.cj.2021.05.002.
  • Wu X, Lu X, Riaz M, Yan L, Jiang C. 2019. Boron toxicity induced specific changes of cell ultrastructure and architecture of components in leaf center and tip of trifoliate orange [Poncirus trifoliata (L.) Raf.]. J Environ Manage. 246:426–433. doi:10.1016/j.jenvman.2019.05.148.
  • Wu X, Song H, Guan C, Zhang Z. 2020. Boron alleviates cadmium toxicity in Brassica napus by promoting the chelation of cadmium onto the root cell wall components. Sci Total Environ. 728:138833. doi:10.1016/j.scitotenv.2020.138833.
  • Wu Z, Wang X, Song B, Zhao X, Du J, Huang W. 2021. Responses of photosynthetic performance of sugar beet varieties to foliar boron spraying. Sugar Tech. 23(6):1332–1338. doi:10.1007/s12355-021-01008-z.
  • Xia J, Hua T, Xue Y, Zhao L, Sun H, Liu C. 2021. Myriophyllum elatinoides: a potential candidate for the phytoremediation of water with low level boron contamination. J Hazard Mater. 401:123333. doi:10.1016/j.jhazmat.2020.123333.
  • Yıldırım K, Uylas S. 2016. Genome-wide transcriptome profiling of black poplar (Populus nigra L.) under boron toxicity revealed candidate genes responsible in boron uptake, transport and detoxification. Plant Physiol Biochem. 109:146–155.
  • Yau SK, Nachit MM, Ryan J, Hamblin J. 1995. Phenotypic variation in boron-toxicity tolerance at seedling stage in durum wheat (Triticum durum). Euphytica. 83(3):185–191. doi:10.1007/BF01678128.
  • Yau SK, Saxena MC. 1997. Variation in growth, development, and yield of durum wheat in response to high soil boron. I. Average effects. Aust J Agric Res. 48(7):945–950. doi:10.1071/A96144.
  • Yoshinari A, Hosokawa T, Amano T, Beier MP, Kunied T, Shimada T, Hara-Nishimur I, Naito S, Takano J. 2019. Polar localization of the borate exporter bor1 requires AP2-dependent endocytosis. Plant Physiol. 179(4):1569–1580. doi:10.1104/pp.18.01017.
  • Yusuf M, Fariduddin Q, Ahmad A. 2011. 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants. Chemosphere. 85(10):1574–1584. doi:10.1016/j.chemosphere.2011.08.004.
  • Zhang B, Gao Y, Zhang L, Zhou Y. 2021. The plant cell wall: biosynthesis, construction, and functions. J Integr Plant Biol. 63(1):251–272. doi:10.1111/jipb.13055.
  • Zhang Q, Chen H, He M, Zhao Z, Cai H, Ding G, Shi L, Xu F. 2017. The boron transporter BnaC4.BOR1;1c is critical for inflorescence development and fertility under boron limitation in Brassica napus. Plant Cell Environ. 40(9):1819–1833. doi:10.1111/pce.12987.
  • Zhao H, Frank T, Tan Y, Zhou C, Jabnoune M, Arpat AB, Cui H, Huang J, He Z, Poirier Y, et al. 2016. Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. New Phytol. 211(3):926–939. doi:10.1111/nph.13969.
  • Zhao Q, Sun Q, Dong P, Ma C, Sun H, Liu C. 2019. Jasmonic acid alleviates boron toxicity in Puccinellia tenuiflora, a promising species for boron phytoremediation. Plant Soil. 445(1–2):397–407. doi:10.1007/s11104-019-04326-0.
  • Zhen M, Cui M, Xia J, Ma C, Liu C. 2019. Effect of nitrogen and phosphorus on alleviation of boron toxicity in Puccinellia tenuiflora under the combined stresses of salt and drought. J Plant Nutr. 42(14):1594–1604. doi:10.1080/01904167.2019.1628982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.