507
Views
3
CrossRef citations to date
0
Altmetric
Articles

Salt-tolerant bacteria enhance the growth of mung bean (Vigna radiata L.) and uptake of nutrients, and mobilize sodium ions under salt stress condition

ORCID Icon, , , , &

References

  • Abbasi MK, Sharif S, Kazmi M, Sultan T, Aslam M. 2011. Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants. Plant Biosyst. 145:159–168. doi:10.1080/11263504.2010.542318.
  • Abd-Alla MH, Vuong TD, Harper JE. 1998. Genotypic differences in dinitrogen fixation response to NaCl stress in intact and grafted soybean. Crop Sci. 38:72–77. doi:10.2135/cropsci1998.0011183X003800010013x.
  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17):3389–3402. doi:10.1093/nar/25.17.3389.
  • Amaresan N, Kumar K, Sureshbabu K, Madhuri K. 2014. Plant growth-promoting potential of bacteria isolated from active volcano sites of Barren Island, India. Lett Appl Microbiol. 58(2):130–137. doi:10.1111/lam.12165.
  • Baethgen WE, Alley MM. 1989. A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant. Commun Soil Sci Plant Anal. 20:961–969. doi:10.1080/00103628909368129.
  • Bakhshandeh E, Pirdashti H, Lendeh KS. 2017. Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecol Eng. 103:164–169. doi:10.1016/j.ecoleng.2017.03.008.
  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A. 2014. ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol. 171(11):884–894. doi:10.1016/j.jplph.2014.03.007.
  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A. 2016. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep. 6:34768. doi:10.1038/srep34768.
  • Braniša J, Jenisová Z, Porubská M, Jomová K, Valko M. 2016. Spectrophotometric determination of chlorophylls and carotenoids. An effect of sonication and sample processing. J Microbiol Biotechnol Food Sci. 3:61–64.
  • Chaudhary DY, Gosavi P, Durve-Gupta A. 2017. Isolation and application of siderophore producing bacteria. Int J Adv Res. 3:246–250.
  • Coutinho FP, Felix WP, Yano-Melo AM. 2012. Solubilization of phosphates in vitro by Aspergillus spp. and Penicillium spp. Ecol Eng. 42:85–89. doi:10.1016/j.ecoleng.2012.02.002.
  • Das P, Behera BK, Meena DK, Azmi SA, Chatterjee S, Meena K, Sharma AP. 2015. Salt stress tolerant genes in halophilic and halotolerant bacteria: Salt stress adaptation and osmoprotection. Int J Curr Microbiol Appl Sci. 4:642–658.
  • Dhiman M, Dhiman VK, Rana N, Dipta B. 2019. Isolation and characterization of Rhizobium associated with root nodules of Dalbergia sissoo. Int J Curr Microbiol Appl Sci. 8:1910–1918. doi:10.20546/ijcmas.2019.803.227.
  • Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK. 2019. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol. 10:1–18.
  • Etesami H, Emami S, Alikhani HA. 2017. Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects – a review. J Soil Sci Plant Nutr. 17:897–911. doi:10.4067/S0718-95162017000400005.
  • Ghosh S, Mitra S, Paul A. 2015. Physiochemical studies of sodium chloride on mungbean (Vigna radiata L. Wilczek) and its possible recovery with spermine and gibberellic acid. Sci World J. 2015:858016. doi:10.1155/2015/858016.
  • Gupta B, Huang B. 2014. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int J Genomics. 2014:701596.
  • Hanumantharao B, Nair RM, Nayyar H. 2016. Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Front Plant Sci. 7:1–20.
  • Heidari M, Golpayegani A. 2012. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agric Sci. 11:57–61. doi:10.1016/j.jssas.2011.09.001.
  • Hmaeid N, Wali M, Ben Mahmoud QM, Pueyo JJ, Ghnaya T, Abdelly C. 2019. Efficient rhizobacteria promote growth and alleviate NaCl-induced stress in the plant species Sulla carnosa. Appl Soil Ecol. 133:104–113. doi:10.1016/j.apsoil.2018.09.011.
  • Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H. 2014a. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf. 104:285–293. doi:10.1016/j.ecoenv.2014.03.008.
  • Islam F, Yasmeen T, Ali Q, Mubin M, Ali S, Arif MS, Hussain S, Riaz M, Abbas F. 2016a. Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation. Environ Sci Pollut Res Int. 23(1):220–233. doi:10.1007/s11356-015-5354-1.
  • Islam F, Yasmeen T, Arif MS, Ali S, Ali B, Hameed S, Zhou W. 2016b. Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul. 80:23–36. doi:10.1007/s10725-015-0142-y.
  • Islam F, Yasmeen T, Riaz M, Arif MS, Ali S, Raza SH. 2014b. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotoxicol Environ Saf. 110:143–152. doi:10.1016/j.ecoenv.2014.08.020.
  • Jackson ML. 1967. Soil chemical analysis. Englewood Cliffs (NJ): Prentice Hall Inc.
  • Jensen HL. 1942. Nitrogen fixation in leguminous plants II. Is symbiotic nitrogen fixation influenced by Azotobacter? Proc Linn Soc Nsw. 57:205–212.
  • Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, Hamayun M, Lee IJ. 2014. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact. 9:673–682. doi:10.1080/17429145.2014.894587.
  • Kartik VP, Jinal HN, Amaresan N. 2021. Inoculation of cucumber (Cucumis sativus L.) seedlings with salt-tolerant plant growth promoting bacteria improves nutrient uptake, plant attributes and physiological profiles. J Plant Growth Regul. 40:1728–1740.
  • Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP. 2020. Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Front Microbiol. 11:1216. doi:10.3389/fmicb.2020.01216.
  • Kumar A, Verma JP. 2019. The role of microbes to improve crop productivity and soil health. In: Achal V, Mukherjee A, editors. Ecological wisdom inspired restoration engineering. EcoWISE (innovative approaches to socio-ecological sustainability). Singapore: Springer; p. 249–265.
  • Kumar K, Amaresan N, Madhuri K. 2017. Alleviation of the adverse effect of salinity stress by inoculation of plant growth promoting rhizobacteria isolated from hot humid tropical climate. Ecol Eng. 102:361–366. doi:10.1016/j.ecoleng.2017.02.023.
  • Kumar K, Manigundan K, Amaresan N. 2016. Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions. J Baisc Microbiol. 56:1–10.
  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z. 2016. Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci. 7:876. doi:10.3389/fpls.2016.00876.
  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK. 2015. Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng. 81:340–347. doi:10.1016/j.ecoleng.2015.04.065.
  • Nerdy. 2018. Determination of sodium, potassium, magnesium, and calcium minerals level in fresh and boiled Broccoli and Cauliflower by atomic absorption spectrometry. IOP Conf Ser Mater Sci Eng. 288:012113.
  • Nutaratat P, Monprasit A, Srisuk N. 2017. High-yield production of indole-3-acetic acid by Enterobacter sp. DMKU-RP206, a rice phyllosphere bacterium that possesses plant growth-promoting traits. 3 Biotech. 7:1–15.
  • Panwar M, Tewari R, Nayyar H. 2016. Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp. improve seed yield of Mungbean (Vigna radiata L.) under soil salinity by reducing sodium uptake and stress injury. Physiol Mol Biol Plants. 22(4):445–459. doi:10.1007/s12298-016-0376-9.
  • Patel KS, Naik JH, Chaudhari S, Amaresan N. 2017. Characterization of culturable bacteria isolated from hot springs for plant growth promoting traits and effect on tomato (Lycopersicon esculentum) seedling. C R Biol. 340(4):244–249. doi:10.1016/j.crvi.2017.02.005.
  • Prittesh P, Avnika P, Kinjal P, Jinal HN, Sakthivel K, Amaresan N. 2020. Amelioration effect of salt-tolerant plant growth-promoting bacteria on growth and physiological properties of rice (Oryza sativa) under salt-stressed conditions. Arch Microbiol. 202(9):2419–2428. doi:10.1007/s00203-020-01962-4.
  • Qi W, Zhao L. 2013. Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. J Basic Microbiol. 53(4):355–364. doi:10.1002/jobm.201200031.
  • Rajalakshmi K, Banu N. 2015. Extraction and estimation of chlorophyll from medicinal plants. Int J Sci Res. 4:209–212.
  • Rajendran G, Patel MH, Joshi SJ. 2012. Isolation and characterization of nodule-associated Exiguobacterium sp. from the root nodules of fenugreek (Trigonella foenum-graecum) and their possible role in plant growth promotion. Int J Microbiol. 2012:693982. doi:10.1155/2012/693982.
  • Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Ann Biochem. 160:47–56. doi:10.1016/0003-2697(87)90612-9.
  • Senthilkumar M, Amaresan N, Sankaranarayanan A. 2021. Plant-microbe interactions: laboratory techniques, Springer protocols handbooks. New York: Humana Press; p. 29.
  • Shi Y, Lou K, Li C. 2009. Promotion of plant growth by phytohormone-producing endophytic microbes of sugar beet. Biol Fertil Soils. 45:645–653. doi:10.1007/s00374-009-0376-9.
  • Shreya D, Jinal HN, Kartik VP, Amaresan N. 2020. Amelioration effect of chromium-tolerant bacteria on growth, physiological properties and chromium mobilization in chickpea (Cicer arietinum) under chromium stress. Arch Microbiol. 202(4):887–894. doi:10.1007/s00203-019-01801-1.
  • Shultana R, Kee Zuan AT, Yusop MR, Saud HM. 2020. Characterization of salt-tolerant plant growth-promoting rhizobacteria and the effect on growth and yield of saline-affected rice. PLOS One. 15:1–16. doi:10.1371/journal.pone.0238537.
  • Tajini F, Mustapha TM, Drevon JJ. 2012. Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi J Biol Sci. 19(2):157–163. doi:10.1016/j.sjbs.2011.11.003.
  • Tang H, Niu L, Wei J, Chen X, Chen Y. 2019. Phosphorus limitation improved salt tolerance in maize through tissue mass density increase, osmolytes accumulation, and Na+ uptake inhibition. Front Plant Sci. 10:856.
  • Tank N, Saraf M. 2010. Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact. 5:51–58. doi:10.1080/17429140903125848.
  • Verma JP, Yadav J, Tiwari KN, Kumar A. 2013. Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng. 51:282–286. doi:10.1016/j.ecoleng.2012.12.022.
  • Zahid M, Kaleem Abbasi M, Hameed S, Rahim N. 2015. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Front Microbiol. 6:207.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.