459
Views
0
CrossRef citations to date
0
Altmetric
Articles

Iodine adsorption and electrochemical double-layer capacitor characteristics of activated carbon prepared from low-cost biomass

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Alamin NU, Khan AS, Nasrullah A, Iqbal J, Ullah Z, Din IU, Muhammad N, Khan SZ. 2021. Activated carbon-alginate beads impregnated with surfactant as sustainable adsorbent for efficient removal of methylene blue. Int J Biol Macromol. 176:233–243. doi:10.1016/j.ijbiomac.2021.02.017.
  • Altintig E, Kirkil S. 2016. Preparation and properties of Ag-coated activated carbon nanocomposites produced from wild chestnut shell by ZnCl2 activation. J Taiwan Inst Chem Eng. 63:180–188. doi:10.1016/j.jtice.2016.02.032.
  • Arslanoğlu H, Orhan R, Turan MD. 2019. Application of response surface methodology for the optimization of copper removal from aqueous solution by activated carbon prepared using waste polyurethane. 53(9):1343–1365. doi:10.1080/00032719.2019.1705849.
  • ASTM. 2006. Standard test method for determination of iodine number of activated carbon 1. West Conshohocken (PA): ASTM International; p. 1–5.
  • Baytar O, Ceyhan AA, Şahin Ö. 2021. Production of activated carbon from Elaeagnus angustifolia seeds using H3PO4 activator and methylene blue and malachite green adsorption. Int J Phytoremediation. 23 (7):693–703. doi:10.1080/15226514.2020.1849015.
  • Baytar O, Şahin Ö, Saka C, Ağrak S. 2018. Characterization of microwave and conventional heating on the pyrolysis of pistachio shells for the adsorption of methylene blue and iodine. Anal Lett. 51:2205–2220.  doi:10.1080/00032719.2017.1415920.
  • Benzigar MR, Talapaneni SN, Joseph S, Ramadass K, Singh G, Scaranto J, Ravon U, Al-Bahily K, Vinu A. 2018. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chem Soc Rev. 47(8):2680–2721. doi:10.1039/c7cs00787f.
  • Bleda-Martínez MJ, Maciá-Agulló JA, Lozano-Castelló D, Morallón E, Cazorla-Amorós D, Linares-Solano A. 2005. Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon. 43 (13):2677–2684. doi:10.1016/j.carbon.2005.05.027.
  • Bouriche R, Tazibet S, Boutillara Y, Melouki R, Benaliouche F, Boucheffa Y. 2020. Characterization of titanium (IV) oxide nanoparticles loaded onto activated carbon for the adsorption of nitrogen oxides produced from the degradation of nitrocellulose. 54(12):1929–1942. doi:10.1080/00032719.2020.1829637.
  • Dandekar A, Baker RTK, Vannice MA. 1998. Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and DRIFTS. Carbon. 36 (12):1821–1831. doi:10.1016/S0008-6223(98)00154-7.
  • Demiral H, Demiral İ. 2018. Preparation and characterization of carbon molecular sieves from chestnut shell by chemical vapor deposition. Adv Powder Technol. 29:3033–3039. doi:10.1016/j.apt.2018.07.015.
  • Fu H-H, Chen L, Gao H, Yu X, Hou J, Wang G, Yu F, Li H, Fan C, Shi Y, Lin , et al. 2020. Walnut shell-derived hierarchical porous carbon with high performances for electrocatalytic hydrogen evolution and symmetry supercapacitors. Int J Hydrogen Energy. 45(1):443–451. doi:10.1016/j.ijhydene.2019.10.159.
  • Genli N, Kutluay S, Baytar O, Şahin Ö. 2022. Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: an application in methylene blue removal by RSM optimization. Int J Phytoremediation. 24(1):88–100. doi:10.1080/15226514.2021.1926911.
  • Haghbin MR, Niknam Shahrak M. 2021. Process conditions optimization for the fabrication of highly porous activated carbon from date palm bark wastes for removing pollutants from water. Powder Technol. 377:890–899. doi:10.1016/j.powtec.2020.09.051.
  • Huve J, Ryzhikov A, Nouali H, Lalia V, Augé G, Daou TJ. 2018. Porous sorbents for the capture of radioactive iodine compounds: a review. RSC Adv. 8 (51):29248–29273. doi:10.1039/C8RA04775H.
  • Iqbal J, Shah NS, Sayed M, Imran M, Muhammad N, Howari FM, Alkhoori SA, Khan JA, Haq Khan ZU, Bhatnagar A, et al. 2019. Synergistic effects of activated carbon and nano-zerovalent copper on the performance of hydroxyapatite-alginate beads for the removal of As3+ from aqueous solution. J Cleaner Prod. 235:875–886. doi:10.1016/j.jclepro.2019.06.316.
  • İzgi MS, Saka C, Baytar O, Saraçoğlu G, Şahin Ö. 2019. Preparation and characterization of activated carbon from microwave and conventional heated almond shells using phosphoric acid activation. Anal Lett. 52 (5):772–789. doi:10.1080/00032719.2018.1495223.
  • Janeta M, Bury W, Szafert S. 2018. Porous silsesquioxane-imine frameworks as highly efficient adsorbents for cooperative iodine capture. ACS Appl Mater Interfaces. 10(23):19964–19973. doi:10.1021/acsami.8b03023.,
  • Karnan M, Raj AGK, Subramani K, Santhoshkumar S, Sathish M. 2020. The fascinating supercapacitive performance of activated carbon electrodes with enhanced energy density in multifarious electrolytes. Sustain Energy Fuels. 4 (6):3029–3041. doi:10.1039/C9SE01298B.
  • Kaya M, Azahin Ö, Saka C. 2018. Preparation and TG/DTG, FT-IR, SEM, BET surface area, iodine number and methylene blue number analysis of activated carbon from pistachio shells by chemical activation. Int J Chem Reactor Eng. 16(2):20170060. doi:10.1515/ijcre-2017-0060.
  • Köse KÖ, Pişkin B, Aydınol MK. 2018. Chemical and structural optimization of ZnCl2 activated carbons via high temperature CO2 treatment for EDLC applications. Int J Hydrogen Energy. 43:18607–18616. doi:10.1016/j.ijhydene.2018.03.222.
  • Li H, Ding X, Han BH. 2016. Porous azo-bridged porphyrin-phthalocyanine network with high iodine capture capability. Chemistry. 22(33):11863–11868. doi:10.1002/chem.201602337.
  • Li G, Huang Y, Lin J, Yu C, Liu Z, Fang Y, Xue Y, Tang C. 2020. Effective capture and reversible storage of iodine using foam-like adsorbents consisting of porous boron nitride microfibers. Chem Eng J. 382:122833. doi:10.1016/j.cej.2019.122833.
  • Liu R, Zhang W, Chen Y, Xu C, Hu G, Han Z. 2020. Highly efficient adsorption of iodine under ultrahigh pressure from aqueous solution. Sep Purif Technol. 233:115999. doi:10.1016/j.seppur.2019.115999.
  • Ma Y. 2017. Comparison of activated carbons prepared from wheat straw via ZnCl2 and KOH activation. Waste Biomass Valorizat. 8 (3):549–559. doi:10.1007/s12649-016-9640-z.
  • Ma G, Guo D, Sun K, Peng H, Yang Q, Zhou X, Zhao X, Lei Z. 2015. Cotton-based porous activated carbon with a large specific surface area as an electrode material for high-performance supercapacitors. RSC Adv. 5 (79):64704–64710. doi:10.1039/C5RA11179J.
  • Ma Z, Han Y, Qi J, Qu Z, Wang X. 2021. High iodine adsorption by lignin-based hierarchically porous flower-like carbon nanosheets. Ind Crops Prod. 169:113649. doi:10.1016/j.indcrop.2021.113649.
  • Ma G, Li J, Sun K, Peng H, Feng E, Lei Z. 2017. Tea-leaves based nitrogen-doped porous carbons for high-performance supercapacitors electrode. J Solid State Electrochem. 21(2):525–535. doi:10.1007/s10008-016-3389-y.
  • Meguro T, Torikai N, Watanabe N, Tomizuka I. 1985. Application of the Dubinin-Radushkevich equation to iodine adsorption by activated carbons from aqueous solution. Carbon. 23 (2):137–140. doi:10.1016/0008-6223(85)90003-X.
  • Mianowski A, Owczarek M, Marecka A. 2007. Surface area of activated carbon determined by the iodine adsorption number. 29(9):839–850. doi:10.1080/00908310500430901.
  • Muhammad R, Attia NF, Cho S, Park J, Jung M, Chung J, Oh H. 2020. Exploitation of surface heterogeneity and textural properties in nanoporous carbon fabrics for efficient iodine capture. Thin Solid Films. 706:138049. doi:10.1016/j.tsf.2020.138049.
  • Naoi K, Nagano Y. 2013. Supercapacitor: materials, system, applications. Hoboken (NJ): John Wiley & Sons;. p. 239–256.
  • Niazi L, Lashanizadegan A, Sharififard H. 2018. Chestnut oak shells activated carbon: preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions. J Cleaner Prod. 185:554–561. doi:10.1016/j.jclepro.2018.03.026.
  • Pala SL, Kebede Biftu W, Suneetha M, Ravindhranath K. 2021. Simultaneous removal of lead and cadmium ions from simulant and industrial waste water: using Calophyllum Inophyllum plant materials as sorbents. doi:10.1080/15226514.2021.1961121.
  • Pei C, Ben T, Xu S, Qiu S. 2014. Ultrahigh iodine adsorption in porous organic frameworks. J Mater Chem A. 2 (20):7179–7187. doi:10.1039/C4TA00049H.
  • Rehman R, Jamil A, Alakhras F. 2021. Sorptive removal of diamond green dye by acid treated Punica granatum peels in eco-friendly way. doi:10.1080/15226514.2021.1932732.
  • Rufford TE, Hulicova-Jurcakova D, Fiset E, Zhu Z, Lu GQ. 2009. Double-layer capacitance of waste coffee ground activated carbons in an organic electrolyte. Electrochem Commun. 11 (5):974–977. doi:10.1016/j.elecom.2009.02.038.
  • Saeed MM, Ahmed M, Ghaffar A. 2003. Adsorption profile of molecular iodine and iodine number of polyurethane foam. Sep Sci Technol. 38 (3):715–731. doi:10.1081/SS-120016661.
  • Şahin Ö, Kaya M, Saka C. 2018. Preparation and characterization of small pore carbon molecular sieves by chemical vapor deposition of pistachio sShells. Anal Lett. 51:2429–2440.  doi:10.1080/00032719.2018.1432630.
  • Şahin Ö, Yardim Y, Baytar O, Saka C. 2020. Enhanced electrochemical double-layer capacitive performance with CO2 plasma treatment on activated carbon prepared from pyrolysis of pistachio shells. Int J Hydrogen Energy. 45(15):8843–8852.
  • Saka C. 2012. BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J Anal Appl Pyrolysis. 95:21–24. doi:10.1016/j.jaap.2011.12.020.
  • Saka C, Baytar O, Yardim Y, Şahin Ö. 2020. Improvement of electrochemical double-layer capacitance by fast and clean oxygen plasma treatment on activated carbon as the electrode material from walnut shells. Biomass Bioenergy. 143. doi:10.1016/j.biombioe.2020.105848.
  • Saka C, Ölçenoğlu GE, Şahin Ö. 2021. Oxygen plasma treated petroleum coke adsorbent: characterization, synthesis, mechanism, and application for enhancement of malachite green removal. doi:10.1080/03067319.2021.1873305.
  • Saka C, Şahin Ö, Küçük MM. 2012. Applications on agricultural and forest waste adsorbents for the removal of lead (II) from contaminated waters. Int J Environ Sci Technol. 9. doi:10.1007/s13762-012-0041-y.
  • Sangeetha DN, Krishna Bhat D, Senthil Kumar S, Selvakumar M. 2020. Improving hydrogen evolution reaction and capacitive properties on CoS/MoS2 decorated carbon fibers. Int J Hydrogen Energy. 45 (13):7788–7800. doi:10.1016/j.ijhydene.2019.10.033.
  • Selvan RK, Perelshtein I, Perkas N, Gedanken A. 2008. Synthesis of hexagonal-shaped SnO 2 nanocrystals and SnO 2 @C nanocomposites for electrochemical redox supercapacitors. J Phys Chem C. 112:1825–1830. doi:10.1021/jp076995q.
  • Sharif YM, Saka C, Baytar O, Şahin Ö. 2018. Preparation and characterization of activated carbon from sesame seed shells by microwave and conventional heating with zinc chloride activation. Anal Lett. 51:2733–2746. doi:10.1080/00032719.2018.1450415.
  • Shin S, Jang J, Yoon S-H, Mochida I. 1997. A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR. Carbon. 35 (12):1739–1743. doi:10.1016/S0008-6223(97)00132-2.
  • Song X, Wang L, Ma X, Zeng Y. 2017. Adsorption equilibrium and thermodynamics of CO 2 and CH 4 on carbon molecular sieves. Appl Surf Sci. 396:870–878.
  • Steinhauser G, Brandl A, Johnson TE. 2014. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ. 470–471:800–817. doi:10.1016/j.scitotenv.2013.10.029.
  • Teğin İ, Saka C. 2021. Chemical and thermal activation of clay sample for improvement adsorption capacity of methylene blue. doi:10.1080/03067319.2021.1928105.
  • Uçar S, Erdem M, Tay T, Karagöz S. 2009. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation. Appl Surf Sci. 255 (21):8890–8896. doi:10.1016/j.apsusc.2009.06.080.
  • Wang H, Gao Q, Hu J. 2009. High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc. 131 (20):7016–7022. doi:10.1021/ja8083225.
  • Worch E. 2021. Adsorption technology in water treatment. Berlin, Germany: Walter de Gruyter.
  • Wu J, Wei F, Sui Y, Qi J, Zhang X. 2020. Interconnected NiS-nanosheets@porous carbon derived from Zeolitic-imidazolate frameworks (ZIFs) as electrode materials for high-performance hybrid supercapacitors. Int J Hydrogen Energy. 45 (38):19237–19245. doi:10.1016/j.ijhydene.2020.05.061.
  • Xiao K, Liu H, Li Y, Yang G, Wang Y, Yao H. 2020. Excellent performance of porous carbon from urea-assisted hydrochar of orange peel for toluene and iodine adsorption. Chem Eng J. 382:122997. doi:10.1016/j.cej.2019.122997.
  • Xu CH, Chen JZ. 2016. Atmospheric-pressure plasma jet processed SnO2 CNT nanocomposite for supercapacitor application. Ceram Int. 42(12):14287–14291.
  • Xu Z, Wang J, Hu Z, Geng R, Gan L. 2017. Structure evolutions and high electrochemical performances of carbon aerogels prepared from the pyrolysis of phenolic resin gels containing ZnCl 2. Electrochim Acta. 231:601–608. doi:10.1016/j.electacta.2016.12.179.
  • Yao Y, Feng Q, Huo B, Zhou H, Huang Z, Li H, Yan Z, Yang X, Kuang Y. 2020. Facile self-templating synthesis of heteroatom-doped 3D porous carbon materials from waste biomass for supercapacitors. Chem Commun (Camb). 56 (78):11689–11692. doi:10.1039/d0cc04320f.
  • Zhang T, Yue X, Gao L, Qiu F, Xu J, Rong J, Pan J. 2017. Hierarchically porous bismuth oxide/layered double hydroxide composites: preparation, characterization and iodine adsorption. J Cleaner Prod. 144:220–227. doi:10.1016/j.jclepro.2017.01.030.
  • Zhong C, Zu Y, Zhao X, Li Y, Ge Y, Wu W, Zhang Y, Li Y, Guo D. 2016. Effect of superfine grinding on physicochemical and antioxidant properties of pomegranate peel. Int J Food Sci Technol. 51(1):212–221. doi:10.1111/ijfs.12982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.