455
Views
1
CrossRef citations to date
0
Altmetric
Articles

Application of zinc oxide nanoparticles to promote remediation of nickel by Sorghum bicolor: metal ecotoxic potency and plant response

, &

References

  • AbdElgawad H, Zinta G, Hamed BA, Selim S, Beemster G, Hozzein WN, Wadaan MAM, Asard H, Abuelsoud W. 2020. Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity. Environ Pollut. 258:113705. doi:10.1016/j.envpol.2019.113705.
  • Adhikari S, Adhikari A, Ghosh S, Roy D, Azahar I, Basuli D, Hossain Z. 2020. Assessment of ZnO-NPs toxicity in maize: an integrative microRNAomic approach. Chemosphere. 249:126197. doi:10.1016/j.chemosphere.2020.126197.
  • Al Chami Z, Amer N, Al Bitar L, Cavoski I. 2015. Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. Int J Environ Sci Technol. 12(12):3957–3970. doi:10.1007/s13762-015-0823-0.
  • Azarin K, Usatov A, Minkina T, Plotnikov A, Kasyanova A, Fedorenko A, Duplii N, Vechkanov E, Rajput VD, Mandzhieva S, et al. 2022. Effects of ZnO nanoparticles and its bulk form on growth, antioxidant defense system and expression of oxidative stress related genes in Hordeum vulgare L. Chemosphere. 287(Pt 2):132167. doi:10.1016/j.chemosphere.2021.132167.
  • Chahardoli A, Sharifan H, Karimi N, Kakavand SN. 2022. Uptake, translocation, phytotoxicity, and hormetic effects of titanium dioxide nanoparticles (TiO2NPs) in Nigella arvensis L. Sci Total Environ. 806(Pt 3):151222. doi:10.1016/j.scitotenv.2021.151222.
  • Chemingui H, Smiri M, Missaoui T, Hafiane A. 2019. Zinc oxide nanoparticles induced oxidative stress and changes in the photosynthetic apparatus in fenugreek (Trigonella foenum graecum L.). Bull Environ Contam Toxicol. 102(4):477–485. doi:10.1007/s00128-019-02590-5.
  • Deng R, Lin D, Zhu L, Majumdar S, White JC, Gardea-Torresdey JL, Xing B. 2017. Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology. 11(5):591–612. doi:10.1080/17435390.2017.1343404.
  • Di Cesare A, Pjevac P, Eckert E, Curkov N, Miko Šparica M, Corno G, Orlić S. 2020. The role of metal contamination in shaping microbial communities in heavily polluted marine sediments. Environ Pollut. 265(Pt B):114823. doi:10.1016/j.envpol.2020.114823.
  • Duda-Chodak A, Blaszczyk U. 2008. The Impact of Nickel on Human Health. J Elementol. 13(4):685–696.
  • Ebrahimbabaie P, Meeinkuirt W, Pichtel J. 2020. Phytoremediation of engineered nanoparticles using aquatic plants: mechanisms and practical feasibility. J Environ Sci (China). 93:151–163. doi:10.1016/j.jes.2020.03.034.
  • Fiala R, Fialová I, Vaculik M, Luxová M. 2021. Effect of Silicon on the Young maize plants exposed to nickel stress. Plant Physiol Biochem. 166(2021):645–656. doi:10.1016/j.plaphy.2021.06.026.
  • Gandhi N, Sirisha D, Asthana S. 2015. Phytoremediation of lead contaminated soil by using sorghum bicolor. BioSciences. 10(9):333–342.
  • Harguinteguy CA, Pignata ML, Fernández-Cirelli A. 2015. Nickel, lead and zinc accumulation and performance in relation to their use in phytoremediation of macrophytes Myriophyllum aquaticum and Egeria densa. Ecol Eng. 82:512–516. doi:10.1016/j.ecoleng.2015.05.039.
  • He X, Deng H, Hwang H. 2019. The current application of nanotechnology in food and agriculture. J Food Drug Anal. 27(1):1–21. doi:10.1016/j.jfda.2018.12.002.
  • Landa P, Prerostova S, Petrova S, Knirsch V, Vankova R, Vanek T. 2015. The transcriptomic response of Arabidopsis thaliana to zinc oxide: a comparison of the impact of nanoparticle, bulk, and ionic zinc. Environ Sci Technol. 49(24):14537–14545. doi:10.1021/acs.est.5b03330.
  • Liu X, Chowdhury MM, Zaman M, Kim M, Nakhla G. 2019. Acute and chronic toxicity of nickel to nitrifiers at different temperatures. J Environ Sci (China). 82:169–178. doi:10.1016/j.jes.2019.03.009.
  • Ma X, Sharifan H, Dou F, Sun W. 2020. Simultaneous reduction of arsenic (As) and cadmium (Cd) accumulation in rice by zinc oxide nanoparticles. Chem Eng J. 384:123802. doi:10.1016/j.cej.2019.123802.
  • Manyangadze M, Chikuruwo NHM, Narsaiah TB, Chakra CS, Radhakumari M, Danha G. 2020. Enhancing adsorption capacity of nano-adsorbents via surface modification: a review. S Afr J Chem Eng. 31:25–32. doi:10.1016/j.sajce.2019.11.003.
  • Martinez RS, Sáenz ME, Alberdi JL, Di Marzio WD. 2019. Comparative ecotoxicity of single and binary mixtures exposures of nickel and zinc on growth and biomarkers of Lemna gibba. Ecotoxicology. 28(6):686–697. doi:10.1007/s10646-019-02065-7.
  • Meychik N, Nikolaeva Y, Kushunina M. 2019. The role of the cell walls in Ni binding by plant roots. J Plant Physiol. 234-235:28–35. doi:10.1016/j.jplph.2019.01.008.
  • Millner PD, Kitt DG. 1992. The Beltsville method for soilless production of vesicular-arbuscular mycorrhizal fungi. Mycorrhiza. 2(1):9–15. doi:10.1007/BF00206278.
  • Nagajyoti PC, Lee KD, Sreekanth TVM. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett. 8(3):199–216. doi:10.1007/s10311-010-0297-8.
  • Panneerselvam A, Rajadurai V, Anguraj BL. 2020. Removal of nickel from aqueous solution using synthesized IL/ZnO NPs. Environ Sci Pollut Res Int. 27(24):29791–29803. doi:10.1007/s11356-019-07425-8.
  • Pinto M, Soares C, Pinto AS, Fidalgo F. 2019. Phytotoxic effects of bulk and nano-sized Ni on Lycium barbarum L. grown in vitro - Oxidative damage and antioxidant response. Chemosphere. 218:507–516. doi:10.1016/j.chemosphere.2018.11.127.
  • Qi X, Tam NF, Li WC, Ye Z. 2020. The role of root apoplastic barriers in cadmium translocation and accumulation in cultivars of rice (Oryza sativa L.) with different Cd-accumulating characteristics. Environ Pollut. 264:114736. doi:10.1016/j.envpol.2020.114736.
  • Rajput V, Minkina T, Fedorenko A, Chernikova N, Hassan T, Mandzhieva S, Sushkova S, Lysenko V, Soldatov M, Burachevskaya M. 2021. Effects of Zinc oxide nanoparticles on Physiological and anatomical indices in spring barley tissues. Nanomaterials. 11(7):1722. doi:10.3390/nano11071722.
  • Reddy-Pullagurala VL, Adisa IO, Rawat S, Kim B, Barrios AC, Medina-Velo IA, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. 2018. Finding the conditions for the beneficial use of ZnO nanoparticles towards plants-A review. Environ Pollut. 241:1175–1181. 10.1016/j.envpol.2018.06.036.
  • Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Zia-Ur-Rehman M, Waris AA. 2019. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 214:269–277. doi:10.1016/j.chemosphere.2018.09.120.
  • Rossi L, Sharifan H, Zhang W, Schwab AP, Ma X. 2018. Mutual effects and in planta accumulation of co-existing cerium oxide nanoparticles and cadmium in hydroponically grown soybean (Glycine max (L.) Merr.). Environ Sci: Nano. 5(1):150–157. doi:10.1039/C7EN00931C.
  • Rossi L, Zhang W, Schwab AP, Ma X. 2017. Uptake, accumulation, and in planta distribution of coexisting cerium oxide nanoparticles and cadmium in glycine max (L.) Merr.  Environ Sci Technol. 51(21):12815–12824. doi:10.1021/acs.est.7b03363.
  • Sadeghipour O. 2021. Chitosan application improves nickel toxicity tolerance in soybean. J Soil Sci Plant Nutr. 21(3):2096–2104. doi:10.1007/s42729-021-00505-0.
  • Salehi H, Rad AC, Sharifan H, Raza A, Varshney RK. 2022. Aerially applied zinc oxide nanoparticle affects reproductive components and seed quality in fully grown bean plants (Phaseolus vulgaris L.). Front Plant Sci. 12:808141.
  • Saxena P, Harish.   2019. Toxicity assessment of ZnO nanoparticles to freshwater microalgae Coelastrella terrestris. Environ Sci Pollut Res. 26(26):26991–27001. doi:10.1007/s11356-019-05844-1.
  • Sharifan H, Moore J, Ma X. 2020a. Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens. Ecotoxicol Environ Saf. 191:110177. doi:10.1016/j.ecoenv.2020.110177.
  • Sharifan H, Wang X, Guo B, Ma X. 2018. Investigation on the modification of physicochemical properties of cerium oxide nanoparticles through adsorption of Cd and As(III)/As(V). ACS Sustainable Chem Eng. 6(10):13454–13461. doi:10.1021/acssuschemeng.8b03355.
  • Sharifan H, Wang X, Ma X. 2020b. Impact of nanoparticle surface charge and phosphate on the uptake of coexisting cerium oxide nanoparticles and cadmium by soybean (Glycine max. (L.) merr.). Int J Phytoremediation. 22(3):305–312. doi:10.1080/15226514.2019.1658713.
  • Singh D, Kumar A. 2019. Assessment of toxic interaction of nano zinc oxide and nano copper oxide on germination of Raphanus sativus seeds. Environ Monit Assess. 191(11):703. doi:10.1007/s10661-019-7902-5.
  • Srivastava J, Chandra H, Kalr SJ. 2012. Response of C3 and C4 plant systems exposed to heavy metals for phytoextraction at elevated atmospheric CO2 and at elevated temperature. Environ Contam. doi:10.5772/31333.
  • Taylor JRN, Schober TJ, Bean SR. 2006. Novel food and non-food uses for sorghum and millets. J Cereal Sci. 44(3):252–271. doi:10.1016/j.jcs.2006.06.009.
  • Wan J, Wang R, Wang R, Ju Q, Wang Y, Xu J. 2019. Comparative physiological and transcriptomic analyses reveal the toxic effects of ZnO nanoparticles on plant growth. Environ Sci Technol. 53(8):4235–4244. doi:10.1021/acs.est.8b06641.
  • Wang F, Adams CA, Shi Z, Sun Y. 2018b. Combined effects of ZnO NPs and Cd on sweet sorghum as influenced by an arbuscular mycorrhizal fungus. Chemosphere. 209:421–429. doi:10.1016/j.chemosphere.2018.06.099.
  • Wang X, Chen C, Wang J. 2017. Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system. Int J Phytorem. 19(4):402–412. doi:10.1002/chem.201801764.
  • Wang X, Sun W, Zhang S, Sharifan H, Ma X. 2018a. Elucidating the effects of cerium oxide nanoparticles and zinc oxide nanoparticles on arsenic uptake and speciation in rice (Oryza sativa) in a Hydroponic System. Environ Sci Technol. 52(17):10040–10047. doi:10.1021/acs.est.8b01664.
  • Xueping C, Juan Y, Zheng C, Hongmei Z, Wangda C, Fayan B, Yu Z, Imran-Ahamed K, Chiquan H, Xiaoyan L. 2020. Acetotrophic methanogens are sensitive to long-term nickel contamination in paddy soil. Environ Sci: Processes Impacts. 22(4):1014–1025. doi:10.1039/D0EM00029A.
  • Zhang W, Long J, Geng J, Li J, Wei Z. 2020. Impact of titanium dioxide nanoparticles on Cd phytotoxicity and bioaccumulation in rice (Oryza sativa L.). Int J Environ Res Public Health. 17(9):2979. doi:10.3390/ijerph17092979.
  • Zhao J, Lu C, Tariq M, Xiao Q, Zhang W, Huang K, Lu Q, Lin K, Liu Z. 2019. The response and tolerance mechanisms of lettuce (Lactuca sativa L.) exposed to nickel in a spiked soil system. Chemosphere. 222:399–406. doi:10.1016/j.chemosphere.2019.01.119.
  • Zoufan P, Baroonian M, Zargar B. 2020. ZnO nanoparticles-induced oxidative stress in Chenopodium murale L, Zn uptake, and accumulation under hydroponic culture. Environ Sci Pollut Res Int. 27(10):11066–11078. doi:10.1007/s11356-020-07735-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.