217
Views
0
CrossRef citations to date
0
Altmetric
Articles

Growth, biochemical, and antioxidant response of pot marigold (Calendula officinalis L.) grown in fly ash amended soil

, ORCID Icon & ORCID Icon

References

  • Ahmad G, Khan AA, Mohamed HI. 2021. Impact of the low and high concentrations of fly ash amended soil on growth, physiological response, and yield of pumpkin (Cucurbita moschata Duch. Ex Poiret L.). Environ Sci Pollut Res Int. 28(14):17068–17083. doi:10.1007/s11356-020-12029-8.
  • Barbara F, Beata J, Dariusz S. 2021. The morphological responses of Calendula officinalis L. “Radio” to the foliar application of benzyladenine and different light spectra. Agronomy. 11(3):460. doi:10.3390/agronomy11030460.
  • Bisoi SS, Mishra SS, Barik J, Panda D. 2017. Effects of different treatments of fly ash and mining soil on growth and antioxidant protection of Indian wild rice. Int J Phytoremed. 19(5):446–452. doi:10.1080/15226514.2016.1244164.
  • Black GR. 1965. Bulk density. In Black CA, editor. Methods of soil analysis. Part I. Agronomy, Vol. 9. Madison: American Society of Agronomy. p. 374–377. doi:10.2134/agronmonogr9.1.c30.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem. 72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3.
  • Cakmak I, Marschner H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 98(4):1222–1227. doi:10.1104/pp.98.4.1222.
  • Dahiya HS, Budania YK. 2018. Prospects of fly ash application in agriculture: a global review. Int J Curr Microbiol App Sci. 7(10):397–409. doi:10.20546/ijcmas.2018.710.043.
  • Dash S, Sahoo S. 2017. Effect of fly ash amendment on the growth of mustard. Int J Appl Environ Sci. 12(9):1617–1629. doi:10.13005/bbra/1164.
  • Dixit A, Nigam M, Mishra R. 2020. Effect of fly ash on geotechnical properties of soil. Int J Eng Tech Mgmt Res. 3(5):7–14. doi:10.29121/ijetmr.v3.i5.2016.62.
  • Gautam M, Pandey D, Agrawal M. 2017. Phytoremediation of metals using lemongrass (Cymbopogon citratus (D.C.) Stapf.) grown under different levels of red mud in soil amended with biowastes. Int J Phytorem. 19(6):555–562. doi:10.1080/15226514.2016.1267701.
  • Giannopolitis CN, Ries SK. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59(2):309–314. doi:10.1104/pp.59.2.309.
  • Grover HL, Nair TVR, Abrol YP. 1978. Nitrogen metabolism of the upper three-leaf blades of wheat at different soil nitrogen levels. I. Nitrate reductase activity and contents of various nitrogenous constituents. Physiol Plant. 42(3):287–292. doi:10.1111/j.1399-3054.1978.tb04084.x.
  • Gupta AK, Sinha S. 2009. Growth and metal accumulation response of Vigna radiata L. var PDM 54 (mung bean) grown on fly ash -amended soil: effect on dietary intake. Can J Public Health. 31(4):463–473.
  • Hikosaka K, Osone Y. 2009. A paradox of leaf-trait convergence: why is leaf nitrogen concentration higher in species with higher photosynthetic capacity. J Plant Res. 122(3):245–251. doi:10.1007/s10265-009-0222-z.
  • Izadi Z, Nejad RA, Abadia J. 2020. Physio-morphological and biochemical responses of pot marigold (Calendula officinalis L.) to split iron nutrition. Acta Physiol Plant. 42(1):6. doi:10.1007/s11738-020-3011-x.
  • James A, Thomas T, Kumar S. 2014. Effect of fly ash on the physicochemical properties of soil health and mustard crop. Internat J Agric Sci. 10(2):576–582.
  • Jana N, Andrabi KI, John R. 2017. Calendula officinalis- An important medicinal plant with potential biological properties. Proc Indian Natn Sci Acad. 83(4):769–787.
  • Kabata-Pendias A. 2011. Trace elements in soils and plants. Boca Raton (FL): CRC press.
  • Kar M, Mishra D. 1976. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 57(2):315–319. doi:10.1104/pp.57.2.315.
  • Karwat H, Sparke MA, Rasche F, Arango J, Nunez J, Rao I, Moret D, Cadisch G. 2019. Nitrate reductase activity in leaves as a plant physiological indicator of in vivo biological nitrification inhibition by Brachiaria humidicola. Plant Physiol Biochem. 137:113–120. doi:10.1016/j.plaphy.2019.02.002.
  • Klepper L, Flesher D, Hageman RH. 1971. Generation of reduced nicotinamide adenine dinucleotide for nitrate reduction in green leaves. Plant Physiol. 48(5):580–590. doi:10.1104/pp.48.5.580.
  • Lowry OH, Rosebrough NL, Farr AL, Randall RI. 1951. Protein measurement with Folin phenol reagent. J Biol Chem. 193(1):265–275. doi:10.1016/S0021-9258(19)52451-6.
  • Miller GL. 1959. Use of dinitro salicylic acid reagent for determination of reducing sugars. Anal Chem. 31(3):426–428. doi:10.1021/ac60147a030.
  • Mishra S, Prasad SVK, Kanungo VK. 2017. Impact of coal fly ash on soil amendment on physicochemical properties of soil. Indian J Sci Res. 13(2):15–20.
  • Nadgorska-Socha A, Kafel A, Kandziora-Ciupa A, Gospodarek J, Zawisza-Raszka A. 2013. Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environ Sci Pollut Res Int. 20(2):1124–1134. doi:10.1007/s11356-012-1191-7.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880. doi:10.1093/oxfordjournals.pcp.a076232.
  • Panda D, Panda D, Padhan B, Biswas M. 2018. Growth and physiological response of lemongrass (Cymbopogon citratus (D.C.) Stapf.) under different levels of fly ash-amended soil. Int J Phytoremediation. 20(6):538–544. doi:10.1080/15226514.2017.1393394.
  • Panda RB, Biswal T. 2018. Impact of fly ash on soil properties and productivity. Int J Agric Environ Biotech. 11(2):275–283. doi:10.30954/0974-1712.04.2018.8.
  • Pandey SK, Bhattacharya T, Chakraborty S. 2016. Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India. Int J Phytoremed. 18(1):87–93. doi:10.1080/15226514.2015.1064353.
  • Pandeya SC, Puri GS, Singh JS. 1968. Research methods in plant ecology. Bombay (India): Asia Publishing House.
  • Pani NK, Samal P, Das R, Sahoo S. 2015. Effect of fly ash on growth and yield of Sunflower (Helianthus annus L.). Int J Agri Agri R. 7(2):64–74.
  • Pant PP, Tripathi AK. 2012. Effect of lead and cadmium on morphological parameters of Syzygium Cumini Linn seedling. Indian J Sci. 1:29–31.
  • Qadir SU, Raja V, Siddiqui WA. 2016. Morphological and biochemical changes in Azadirachta indica from coal combustion fly ash dumping site from a thermal power plant in Delhi, India. Ecotoxicol Environ Saf. 129:320–328. doi:10.1016/j.ecoenv.2016.03.026.
  • Qihang W, Wang S, Thangavel P, Li Q, Zheng H, Bai J, Qiu R. 2011. Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. Int J Phytoremediation. 13(8):788–804. doi:10.1080/15226514.2010.525562.
  • Raj S, Mohan S. 2018. Influence of metal uptake from fly ash on the growth of Jatropha Curcas plant: bulk utilization approach. Int J Pharm Bio Sci. 9(2):154–159. doi:10.22376/ijpbs.2018.9.2.b154-159.
  • Reeb JE, Milota MR. 1999. Moisture content by the oven-dry method for industrial testing. Proceedings from the Western Dry Kiln Association Meeting. Portland.
  • Sahay S, Inam A, Inam A, Iqbal S. 2015. Modulation in growth, photosynthesis, and yield attributes of black mustard (B. nigra cv. IC247) by an interactive effect of wastewater and fly ash under different NPK levels. Soil and Crop Sci. 1(1):1087632–1087618. doi:10.1080/23311932.2015.1087632.
  • Shakeel A, Khan AA, Hakeem KR. 2020. Growth, biochemical, and antioxidant response of beetroot (Beta vulgaris L.) grown in fly ash amended soil. SN Appl Sci. 2(8):1378. doi:10.1007/s42452-020-3191-4.
  • Sharma B, Singh RP. 2019. Physiological, Biochemical, Growth, and Yield Responses of Radish (Raphanus sativus L.) Plants Grown on Different Sewage Sludge–FA Mixture (SLASH) Ratios. Waste Valorisat Recycl. 2:539–552.
  • Skousen J, Yang JE, Lee JS, Ziemkiewicz P. 2013. Review of fly ash as a soil amendment. J Geosystem Eng. 16(3):249–256. doi:10.1080/12269328.2013.832403.
  • Srivastava V, Sarkar A, Singh S, Singh P, de Araujo ASF, Singh RP. 2017. Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Front Environ Sci. 5:e00064. doi:10.3389/fenvs.2017.00064.
  • Tripathi P, Mishra A, Dwivedi S, Chakrabarty D, Trivedi PK, Singh RP, Tripathi RD. 2012. Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotoxicol Environ Saf. 79:189–198. doi:10.1016/j.ecoenv.2011.12.019.
  • Upadhyay SK, Ahmad M, Srivastava AK, Abhilash PC, Sharma B. 2021. Optimization of eco-friendly novel amendments for sustainable utilization of Fly ash based on growth performance, hormones, antioxidant, and heavy metal translocation in chickpea (Cicer arietinum L.) plant. Chemosphere. 267:129216–129218. doi:10.1016/j.chemosphere.2020.129216.
  • Usmani Z, Kumar V. 2017. Characterization, partitioning, and potential ecological risk quantification of trace elements in coal fly ash. Environ Sci Pollut Res. 24(18):15547–15566. doi:10.1007/s11356-017-9171-6.
  • Varshney A, Dahiya P, Singh N, Mohan S. 2019. Variations in morphological parameters and pigment content of Calendula officinalis grown in fly ash amended soil. Plant Archives. 19(2):2959–2963.
  • Varshney A, Mohan S, Dahiya P. 2021. Growth and antioxidant responses in plants induced by heavy metals present in fly ash. Energ Ecol Environ. 6(2):92–110. doi:10.1007/s40974-020-00191-1.
  • Varshney A, Mohan S, Dahiya P. 2021. Assessment of leaf morphological characteristics, phenolics content, and metal(loid)s concentrations in Calendula officinalis L. grown on fly ash amended soil. Ind Crops Prod. 174:114233–114239. doi:10.1016/j.indcrop.2021.114233.
  • Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L, Massacci A. 2009. Metal tolerance, accumulation, and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut. 197(1–4):23–34. doi:10.1007/s11270-008-9788-7.
  • Zouari M, Ben Ahmed C, Zorrig W, Elloumi N, Rabhi M, Delmail D, Ben Rouina B, Labrousse P, Ben Abdallah F. 2016. Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity, water status, and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.). Ecotoxicol Environ Saf. 128:100–108. doi:10.1016/j.ecoenv.2016.02.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.