208
Views
0
CrossRef citations to date
0
Altmetric
Articles

Crops with potential for diclosulam remediation and concomitant bioenergy production

, , , , , , & ORCID Icon show all

References

  • Aguiar LM, Santos JB, Ferreira EA, Cabral CM, Pereira IM, Barroso GM, Santos NMC. 2018. Physiological characteristics of trees recommended for the phytoremediation of soils contaminated with herbicides. Planta daninha. 36(0):e018177021. doi:10.1590/s0100-83582018360100114.
  • Albuquerque AF, Ribeiro JS, Kummrow F, Nogueira AJA, Montagner CC, Umbuzeiro GA. 2016. Pesticides in Brazilian freshwaters: a critical review. Environ Sci Process Impacts. 18(7):779–787. doi:10.1039/C6EM00268D.
  • Alencar BTB, Ribeiro VHV, Cabral CM, Dos Santos NMC, Ferreira EA, Francino DMT, Santos JB, Silva DV, Souza MF. 2020. Use of macrophytes to reduce the contamination of water resources by pesticides. Eological Indicators. 109:105785. doi:10.1016/j.ecolind.2019.105785.
  • Alizadeh H, Teymouri F, Gilbert TI, Dale BE. 2005. Pretreatment of switchgrass by ammonia fiber explosion (AFEX). ABAB. 124(1-3):1133–1141. doi:10.1385/ABAB:124:1-3:1133.
  • Baker NR. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol. 59:89–113. doi:10.1146/annurev.arplant.59.032607.092759.
  • Belo AF, Coelho ATCP, Ferreira LR, Silva AA, Santos JB. 2011. Potencial de espécies vegetais na remediação de solo contaminado com sulfentrazone. Planta daninha. 29(4):821–828. doi:10.1590/S0100-83582011000400012.
  • Bento CB, Filoso S, Pitombo LM, Cantarella H, Rossetto R, Martinelli LA, Carmo JB. 2018. Impacts of sugarcane agriculture expansion over low-intensity cattle ranch pasture in Brazil on greenhouse gases. J Environ Manage. 206:980–988. doi:10.1016/j.jenvman.2017.11.085.
  • Bordonal RO, Lal R, Aguiar DA, Figueiredo EB, Perillo LI, Adami M, Rudorff BFT, La Scala N. 2015. Greenhouse gas balance from cultivation and direct land use change of recently established sugarcane (Saccharum officinarum) plantation in south-central Brazil. Renewable Sustainable Energy Rev. 52:547–556. doi:10.1016/j.rser.2015.07.137.
  • Cao B, Zhang Y, Wang Z, Li M, Yang F, Jiang D, Jiang Z. 2018. Insight into the variation of bacterial structure in atrazine-contaminated soil regulating by potential phytoremediator: Pennisetum americanum (L.) K. Schum. Front Microbiol. 9:864. doi:10.3389/fmicb.2018.00864.
  • Carvalho CJR. 2005. Respostas de plantas de Schizolobium amazonicum [S. parahyba var. amazonicum] e Schizolobium parahyba [Schizolobium parahybum] à deficiência hídrica. Rev Árvore. 29(6):907–914. doi:10.1590/S0100-67622005000600009.
  • Castro CADO, Resende RT, Kuki KN, Carneiro VQ, Marcatti GE, Cruz CD, Motoike SY. 2017. High-performance prediction of macauba fruit biomass for agricultural and industrial purposes using Artificial Neural Networks. Ind Crops Prod. 108:806–813. doi:10.1016/j.indcrop.2017.07.031.
  • Cholette TB, Soltani N, Hooker DC, Robinson DE, Sikkema PH. 2017. Effect of soybean and winter wheat herbicides on oilseed radish establishment and growth. Can J Plant Sci. 97(6):1175–1184. doi:10.1139/CJPS-2017-0023.
  • Cornelius CD, Bradley KW. 2017. Carryover of common corn and soybean herbicides to various cover crop species. Weed Technol. 31(1):21–31. doi:10.1614/WT-D-16-00062.1.
  • Dan HAD, Dan LDM, Barroso ADL, Procópio SDO, Oliveira J, Braz GBP, Alonso DG. 2012. Bioactivity of herbicides used to soybean on sunflower crop in succession. Cienc Rural. 42(11):1929–1935. doi:10.1590/S0103-84782012005000081.
  • Dar RA, Dar EA, Kaur A, Phutela UG. 2018. Sweet sorghum-a promising alternative feedstock for biofuel production. Renewable Sustainable Energy Rev. 82:4070–4090. doi:10.1016/j.rser.2017.10.066.
  • Demirbaş A. 2005. Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources. 27(4):327–337. doi:10.1080/00908310390266643.
  • Diaz-Chavez R. 2015. Assessing sustainability for biomass energy production and use. In: Callé FR, editor. The Biomass Assessment Handbook. Boca Raton (FL): Routledge; p. 199–227.
  • Embrapa S. 2013. Sistema brasileiro de classificação de solos. Rio de Janeiro: Centro Nacional de Pesquisa de Solos.
  • Empresa de Pesquisa Energética [EPE]. 2022. Análise de Conjuntura dos Biocombustíveis - Ano 2020. [accessed 2022 Apr 28]. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-615/NT-EPE-DPG-SDB-2021-03_Analise_de_Conjuntura_dos_Biocombustiveis_ano_2020.pdf.
  • Ferreira EA, Matos CDCd, Barbosa EA, Silva DV, Santos JBd, Pereira GAM, Faria AT, Silva CTd. 2015. Respostas fisiológicas da mandioca à aplicação de herbicidas. Sem Ci Agr. 36(2):645–655. doi:10.5433/1679-0359.2015v36n2p645.
  • Ferreira MG, Barroso GM, Costa VAM, Castro BM, Zanuncio JC, Pereira IM, Ferreira EA, Francino DMT, Santos JB. 2019. Development of native forest species of the Atlantic forest in soil contaminated with hormonal herbicides. Int J Phytoremediation. 21(9):921–927. doi:10.1080/15226514.2019.1583636.
  • Gu F, Yang LF, Jin YC, Han Q, Chang HM, Jameel H, Phillips R. 2012. Green liquor pretreatment for improving enzymatic hydrolysis of corn stover. Bioresour Technol. 124:299–305. doi:10.1016/j.biortech.2012.08.054.
  • Haque MA, Nath Barman D, Kang TH, Kim MK, Kim J, Kim H, Yun HD. 2012. Effect of dilute alkali on structural features and enzymatic hydrolysis of barley straw (Hordeum vulgare) at boiling temperature with low residence time. J Microbiol Biotechnol. 22(12):1681–1691. doi:10.4014/jmb.1206.06058.
  • Humpenöder F, Popp A, Bodirsky BL, Weindl I, Biewald A, Lotze-Campen H, Dietrich JP, Klein D, Kreidenweis U, Müller C, et al. 2018. Large-scale bioenergy production: how to resolve sustainability trade-offs? Environ Res Lett. 13(2):024011. doi:10.1088/1748-9326/aa9e3b.
  • INMET. 2016. Instituto Nacional de Meteorologia: Estação Meteorológica Diamantina-MG. [accessed 2021 Jan 2]. http://www.inmet.gov.br/portal/index.php?r=estacoes/estacoesAutomaticas.
  • Jönsson LJ, Martín C. 2016. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 199:103–112. doi:10.1016/j.biortech.2015.10.009.
  • Lavorenti A, Rocha AA, Prata F, Regitano JB, Tornisielo VL, Pinto OB. 2003. Comportamento do diclosulam em amostras de um latossolo vermelho distroférrico sob plantio direto e convencional. Rev Bras Ciênc Solo. 27(1):183–190. doi:10.1590/S0100-06832003000100019.
  • MAPA-BRASIL. Ministério da Agricultura e do Abastecimento. Agrofit- Sistema de Agrotóxicos Fitossanitários. [accessed 2021 Jan]. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons.
  • Matte WD, Cavalieri SD, Pereira CS, Ikeda FS, Costa WB. 2019. Residual activity of diclosulam applied to soybean on cotton crop in succession. Planta daninha. 37:e019181370. doi:10.1590/s0100-83582019370100016.
  • Ministério do meio ambiente – IBAMA [MMA]. 2020. [accessed 2020 Feb 2]. http://ibama.gov.br/agrotóxicos/relatórios-de-comercializacao-de-agrotoxicos.
  • Monquero PA, Côrrea MC, Barbosa LN, Gutierrez A, Orzari I, Hirata ACS. 2013. Selection of green manure species aiming at diclosulam phytoremediation. Planta daninha. 31(1):127–135. doi:10.1590/S0100-83582013000100014.
  • Nigam PS, Singh A. 2011. Production of liquid biofuels from renewable resources. Prog Energy Combust Sci. 37(1):52–68. doi:10.1016/j.pecs.2010.01.003.
  • Novais RF, Venegas VHA, Barros NF, Fontes RL, Reinaldo RB, Neves JCL. 2007. Fertilidade do solo. Vol. 1. Viçosa: Editora UFV; p. 1017.
  • National Renewable energy Laboratory [NREL]. 2012. Biomass compositional analysis laboratory procedures. Washington (DC): EE.UU. https://www.nrel.gov/bioenergy/biomass-compositional-analysis.html.
  • Oliveira RSJ. 2011. Mecanismos de ação de herbicidas. Biologia e manejo de plantas daninhas. Curitiba: Omnipax. 1:141–192.
  • Peterson MA, McMaster SA, Riechers DE, Skelton J, Stahlman PW. 2016. 2,4-D past, present, and future: a review. Weed Technol. 30(2):303–345. doi:10.1614/WT-D-15-00131.1.
  • Qin Z, Zhuang Q, Cai X, He Y, Huang Y, Jiang D, Lin E, Liu Y, Tang Y, Wang MQ. 2018. Biomass and biofuels in China: toward bioenergy resource potentials and their impacts on the environment. Renewable Sustainable Energy Rev. 82:2387–2400. doi:10.1016/j.rser.2017.08.073.
  • Santos EA, Filho USDS, Barroso GM, Rocha BPJS, Possato EL. 2020. Tolerance and remedial potential of trees submitted to atrazine and sulfentrazone in the rhizosphere. Int J Phytorem. 22(1):78–79. doi:10.1080/15226514.2019.1644290.
  • Sociedade Brasileira da Ciência das Plantas Daninhas [SBCPD]. 1995. Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. Londrina: SBCPD. p. 42.
  • Schröder P, Beckers B, Daniels S, Gnädinger F, Maestri E, Marmiroli N, Mench M, Millan R, Obermeier N, Oustriere N, et al. 2018. Intensify production, transform biomass to energy and novel goods and protect soils in Europe – a vision how to mobilize marginal lands. Sci Total Environ. 616–617:1101–1123. doi:10.1016/j.scitotenv.2017.10.209.
  • Soltani N, Mashhadi HR, Mesgaran MB, Cowbrough M, Tardif FJ, Chandler K, Nurse RE, Swanton CJ, Sikkema PH. 2011. The effect of residual corn herbicides on injury and yield of soybean seeded in the same season. Can J Plant Sci. 91(3):571–576. doi:10.4141/cjps10110.
  • Taiz L, Zeiger E, Møller IM, Murphy A. 2017. Fisiologia e desenvolvimento vegetal. Puerto Alegre: Artmed Editora.
  • Teixeira Silva C, Barroso GM, Valadão da Silva D, Galon L, Holz CM, Santos MV, Evaristo AB, Chagas PSF, Carvalho AJE, Santos JB. 2021. Remedial capacity of diclosulam by cover plants in different edaphoclimatic conditions. Int J Phytoremediation. 23(6):609–618. doi:10.1080/15226514.2020.1847032.
  • Vanderghem C, Brostaux Y, Jacquet N, Blecker C, Paquot M. 2012. Optimization of formic/acetic acid delignification of Miscanthus x giganteus for enzymatic hydrolysis using response surface methodology. Ind Crops Prod. 35(1):280–286. doi:10.1016/j.indcrop.2011.07.014.
  • Vassilev SV, Baxter D, Vassileva CG. 2014. An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types. Fuel. 117:152–183. doi:10.1016/j.fuel.2013.05.043.
  • Venghaus S, Acosta L. 2018. To produce or not to produce: an analysis of bioenergy and crop production decisions based on farmer typologies in Brandenburg, Germany. Reg Environ Change. 18(2):521–532. doi:10.1007/s10113-017-1226-1.
  • Xiao X, Bian J, Li MF, Xu H, Xiao B, Sun RC. 2014. Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment. Bioresour Technol. 159:41–47. doi:10.1016/j.biortech.2014.02.096.
  • Xu J, Zhang J, Dong F, Liu X, Zhu G, Zheng Y. 2015. A multiresidue analytical method for the detection of seven triazolopyrimidine sulfonamide herbicides in cereals, soybean and soil using the modified QuEChERS method and UHPLC-MS/MS. Anal Methods. 7(23):9791–9799. doi:10.1039/C5AY01622C.
  • Zabik JM, Wesenbeeck IJ, Peacock AL, Kennard LM, Roberts DW. 2001. Terrestrial field dissipation of diclosulam at four sites in the United States. J Agric Food Chem. 49(7):3284–3290. doi:10.1021/jf001236p.
  • Zuanazzi JAS, Mayorga P. 2010. Phytoproducts and economic development. Quím Nova. 33(6):1421–1428. doi:10.1590/S0100-40422010000600037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.