261
Views
0
CrossRef citations to date
0
Altmetric
Articles

Field assessment of trace element phytoextraction by different Populus clones established on brownfields in southern Quebec (Canada)

&

References

  • Algreen M, Trapp S, Rein A. 2014. Phytoscreening and phytoextraction of heavy metals at Danish polluted sites using willow and poplar trees. Environ Sci Pollut Res Int. 21(15):8992–9001. doi:10.1007/s11356-013-2085-z.
  • AOAC. 1995. Official methods of analysis of the association of official analytical chemistry. Washington (DC): AOAC International.
  • Brallier S, Harrison RB, Henry CL, Dongsen X. 1996. Liming effects on availability of Cd, Cu, Ni and Zn in a soil amended with sewage sludge 16 years previously. Water Air Soil Pollut. 86(1–4):195–206. doi:10.1007/BF00279156.
  • Castiglione S, Todeschini V, Franchin C, Torrigiani P, Gastaldi D, Cicatelli A, Rinaudo C, Berta G, Biondi S, Lingua G. 2009. Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: a large-scale field trial on heavily polluted soil. Environ Pollut. 157(7):2108–2117. doi:10.1016/j.envpol.2009.02.011.
  • CEANAQ. 2014. Détermination du pH: méthode électrométrique, MA. 100 – pH 1.1, Rév. 3. Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs du Québec.
  • Chapman N, Miller AJ, Lindsey K, Whalley WR. 2012. Roots, water, and nutrient acquisition: let's get physical. Trends Plant Sci. 17(12):701–710. doi:10.1016/j.tplants.2012.08.001.
  • Cloutier-Hurteau B, Turmel M-C, Mercier C, Courchesne F. 2014. The sequestration of trace elements by willow (Salix purpurea)-which soil properties favor uptake and accumulation? Environ Sci Pollut Res Int. 21(6):4759–4771. doi:10.1007/s11356-013-2450-y.
  • Desjardins D, Pitre FE, Nissim WG, Labrecque M. 2016. Differential uptake of silver, copper and zinc suggests complementary species-specific phytoextraction potential. Int J Phytoremediation. 18(6):598–604. doi:10.1080/15226514.2015.1086296.
  • Dickmann DI, Kuzovkina J. 2008. Poplars and willows of the world, with emphasis on silviculturally important species. Rome: FAO.
  • Dillen SY, Marron N, Bastien C, Ricciotti L, Salani F, Sabatti M, Pinel MPC, Rae AM, Taylor G, Ceulemans R. 2007. Effects of environment and progeny on biomass estimations of five hybrid poplar families grown at three contrasting sites across Europe. For Ecol Manage. 252(1–3):12–23. doi:10.1016/j.foreco.2007.06.003.
  • Ferro AM, Adham T, Berra B, Tsao D. 2013. Performance of deep-rooted phreatophytic trees at a site containing total petroleum hydrocarbons. Int J Phytoremediation. 15(3):232–244. doi:10.1080/15226514.2012.687195.
  • Fortier J, Truax B, Gagnon D, Lambert F. 2012. Hybrid poplar yields in Québec: implications for a sustainable forest zoning management system. For Chron. 88(4):391–407. doi:10.5558/tfc2012-075.
  • Fortin Faubert M, Desjardins D, Hijri M, Labrecque M. 2021. Willows used for phytoremediation increased organic contaminant concentrations in soil surface. Appl Sci. 11(7):2979. doi:10.3390/app11072979.
  • Garbisu C, Alkorta I. 2001. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol. 77(3):229–236. doi:10.1016/S0960-8524(00)00108-5.
  • Ghaly AE, Kamal M, Mahmoud NS. 2005. Phytoremediation of aquaculture wastewater for water recycling and production of fish feed. Environ Int. 31(1):1–13. doi:10.1016/j.envint.2004.05.011.
  • Guidi Nissim W, Labrecque M. 2021. Reclamation of urban brownfields through phytoremediation: implications for building sustainable and resilient towns. Urban For Urban Green. 65:127364. doi:10.1016/j.ufug.2021.127364.
  • Guidi Nissim W, Palm E, Mancuso S, Azzarello E. 2018. Trace element phytoextraction from contaminated soil: a case study under Mediterranean climate. Environ Sci Pollut Res Int. 25(9):9114–9131. doi:10.1007/s11356-018-1197-x.
  • Guidi Nissim W, Palm E, Pandolfi C, Mancuso S, Azzarello E. 2021. Willow and poplar for the phyto-treatment of landfill leachate in Mediterranean climate. J Environ Manage. 277:111454. doi:10.1016/j.jenvman.2020.111454.
  • Hammer D, Kayser A, Keller C. 2003. Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Use Manage. 19(3):187–192. doi:10.1111/j.1475-2743.2003.tb00303.x.
  • Hendershot W, Lalande H, Duquette M. 2008a. Ion exchange and exchangeable cations. In: Carter MR, Gregorich EG, editors. Soil sampling and methods of analysis. Vol. 2. Boca Raton (FL): Canadian Society of Soil Science. p. 196–206.
  • Hendershot W, Lalande H, Duquette M. 2008b. Soil reaction and exchangeable acidity. In: Carter MR, Gregorich EG, editors. Soil sampling and methods of analysis. Vol. 2. Boca Raton (FL): Canadian Society of Soil Science. p. 173–178.
  • Hou D, Song Y, Zhang J, Hou M, O'Connor D, Harclerode M. 2018. Climate change mitigation potential of contaminated land redevelopment: a city-level assessment method. J Clean Prod. 171:1396–1406. doi:10.1016/j.jclepro.2017.10.071.
  • Kim K, Voothuluru P, Hamilton C, McCord J, Tamang B, Cunningham M, Eberhardt TL, Rials T, Labbé N. 2021. Tradeoffs between yield, disease incidence and conversion efficiency for selection of hybrid poplar genotypes as bioenergy feedstocks. Biomass Bioenergy. 154:106259. doi:10.1016/j.biombioe.2021.106259.
  • Kuzovkina YA, Volk TA. 2009. The characterization of willow (Salix L.) varieties for use in ecological engineering applications: co-ordination of structure, function and autecology. Ecol Eng. 35(8):1178–1189. doi:10.1016/j.ecoleng.2009.03.010.
  • Li T, Di Z, Yang X, Sparks DL. 2011. Effects of dissolved organic matter from the rhizosphere of the hyperaccumulator Sedum alfredii on sorption of zinc and cadmium by different soils. J Hazard Mater. 192(3):1616–1622. doi:10.1016/j.jhazmat.2011.06.086.
  • Liphadzi MS, Kirkham MB, Mankin KR, Paulsen GM. 2003. EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant Soil. 257(1):171–182. doi:10.1023/A:1026294830323.
  • Ma F, Zhang Q, Xu D, Hou D, Li F, Gu Q. 2014. Mercury removal from contaminated soil by thermal treatment with FeCl3 at reduced temperature. Chemosphere. 117:388–393. doi:10.1016/j.chemosphere.2014.08.012.
  • Madejón P, Domínguez MT, Gil-Martínez M, Navarro-Fernández CM, Montiel-Rozas MM, Madejón E, Murillo JM, Cabrera F, Marañón T. 2018. Evaluation of amendment addition and tree planting as measures to remediate contaminated soils: the Guadiamar case study (SW Spain). CATENA. 166:34–43. doi:10.1016/j.catena.2018.03.016.
  • Mattina MI, Lannucci-Berger W, Musante C, White JC. 2003. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut. 124(3):375–378. doi:10.1016/S0269-7491(03)00060-5.
  • MDDELCC. 2016. Guide d'intervention. Protection des sols et réhabilitation des terrains contaminés. Québec: Ministère du développement durable, de l’environnement et de la lutte contre les changementsclimatiques. p. 204.
  • Meers E, Lamsal S, Vervaeke P, Hopgood M, Lust N, Tack FMG. 2005. Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Environ Pollut. 137(2):354–364. doi:10.1016/j.envpol.2004.12.019.
  • Merkle SA. 2006. Engineering forest trees with heavy metal resistance genes. Silvae Genet. 55(1–6):263–268. doi:10.1515/sg-2006-0034.
  • Michels E, Annicaerta B, De Moor S, Van Nevel L, De Fraeye M, Meiresonne L, Vangronsveld J, Tack FMG, Ok YS, Meers E. 2018. Limitations for phytoextraction management on metal-polluted soils with poplar short rotation coppice-evidence from a 6-year field trial. Int J Phytoremediation. 20(1):8–15. doi:10.1080/15226514.2016.1207595.
  • Nelson ND, Meilan R, Berguson WE, McMahon BG, Cai M, Buchman D. 2019. Growth performance of hybrid poplar clones on two agricultural sites with and without early irrigation and fertilization. Silvae Genet. 68(1):58–66. doi:10.2478/sg-2019-0011.
  • Nguyen TXT, Amyot M, Labrecque M. 2017. Differential effects of plant root systems on nickel, copper and silver bioavailability in contaminated soil. Chemosphere. 168:131–138.
  • O’Neill MK, Allen SC, Heyduck RF, Lombard KA, Smeal D, Arnold RN. 2014. Hybrid poplar (Populus spp.) adaptation to a semi-arid region: results from Northwest New Mexico (2002–2011). Agroforest Syst. 88(3):387–396. doi:10.1007/s10457-014-9694-5.
  • Pontailler J, Ceulemans R, Guittet J. 1999. Biomass yield of poplar after five 2-year coppice rotation. Forestry. 72(2):157–163.
  • Rabenhorst MC. 1988. Determination of organic and carbonate carbon in calcareous soils using dry combustion. Soil Sci Soc Am J. 52(4):965–968. doi:10.2136/sssaj1988.03615995005200040012x.
  • Richardson J, Cooke JEK, Isebrands JG, Thomas BR, Van Rees KCJ. 2007. Poplar research in Canada—a historical perspective with a view to the future. Can J Bot. 85(12):1136–1146. doi:10.1139/B07-103.
  • Radojčić Redovniković I, De Marco A, Proietti C, Hanousek K, Sedak M, Bilandžić N, Jakovljević T. 2017. Poplar response to cadmium and lead soil contamination. Ecotoxicol Environ Saf. 144:482–489. doi:10.1016/j.ecoenv.2017.06.011.
  • Rieuwerts JS, Thornton I, Farago ME, Ashmore MR. 1998. Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem Speciat Bioavailab. 10(2):61–75. doi:10.3184/095422998782775835.
  • Santillan-Medrano J, Jurinak JJ. 1975. The chemistry of lead and cadmium in soil: solid phase formation. Soil Sci Soc Am J. 39(5):851–856. doi:10.2136/sssaj1975.03615995003900050020x.
  • Sebastiani L, Scebba F, Tognetti R. 2004. Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides √ó maximowiczii) and I-214 (P. √ó euramericana) exposed to industrial waste. Environ Exp Bot. 52(1):79–88. doi:10.1016/j.envexpbot.2004.01.003.
  • Singh NP, Santal AR. 2015. Phytoremediation of heavy metals: the use of green approaches to clean the environment. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L, editors. Phytoremediation: management of environmental contaminants. Vol. 2. Cham: Springer International Publishing. p. 115–129.
  • Štochlová P, Novotná K, Costa M, Rodrigues A. 2019. Biomass production of poplar short rotation coppice over five and six rotations and its aptitude as a fuel. Biomass Bioenergy. 122:183–192. doi:10.1016/j.biombioe.2019.01.011.
  • Suo Y, Tang N, Li H, Corti G, Jiang L, Huang Z, Zhang Z, Huang J, Wu Z, Feng C, et al. 2021. Long-term effects of phytoextraction by a poplar clone on the concentration, fractionation, and transportation of heavy metals in mine tailings. Environ Sci Pollut Res Int. 28(34):47528–47539. doi:10.1007/s11356-021-13864-z.
  • Truax B, Gagnon D, Fortier J, Lambert F. 2014. Biomass and volume yield in mature hybrid poplar plantations on temperate abandoned farmland. Forests. 5(12):3107–3130. doi:10.3390/f5123107.
  • Verlinden MS, Broeckx LS, Ceulemans R. 2015. First vs. second rotation of a poplar short rotation coppice: above-ground biomass productivity and shoot dynamics. Biomass Bioenergy. 73:174–185. doi:10.1016/j.biombioe.2014.12.012.
  • Widdowson MA, Shearer S, Andersen RG, Novak JT. 2005. Remediation of polycyclic aromatic hydrocarbon compounds in groundwater using poplar trees. Environ Sci Technol. 39(6):1598–1605. doi:10.1021/es0491681.
  • Wu F, Yang W, Zhang J, Zhou L. 2010. Cadmium accumulation and growth responses of a poplar (Populus deltoids × Populus nigra) in cadmium contaminated purple soil and alluvial soil. J Hazard Mater. 177(1–3):268–273. doi:10.1016/j.jhazmat.2009.12.028.
  • Wu J, Zhou Q, Sang Y, Kang X, Zhang P. 2021. Genotype-environment interaction and stability of fiber properties and growth traits in triploid hybrid clones of Populus tomentosa. BMC Plant Biol. 21(1):405. doi:10.1186/s12870-021-03156-6.
  • Yemshanov D, McKenney D. 2008. Fast-growing poplar plantations as a bioenergy supply source for Canada. Biomass Bioenergy. 32(3):185–197. doi:10.1016/j.biombioe.2007.09.010.
  • Yoon JM, Oh B-T, Just CL, Schnoor JL. 2002. Uptake and leaching of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by hybrid poplar trees. Environ Sci Technol. 36(21):4649–4655. doi:10.1021/es020673c.
  • Zhang W, Cai Y, Tu C, Ma LQ. 2002. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci Total Environ. 300(1–3):167–177. doi:10.1016/S0048-9697(02)00165-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.