336
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent advances in arsenic mitigation in rice through biotechnological approaches

&

References

  • Ahmed ZU, Panaullah GM, Gauch H, McCouch SR, Tyagi W, Kabir MS, Duxbury JM. 2011. Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant Soil. 338(1–2):367–382. doi:10.1007/s11104-010-0551-7.
  • Awasthi S, Chauhan R, Dwivedi S, Srivastava S, Srivastava S, Tripathi RD. 2018. A consortium of alga (Chlorella vulgaris) and bacterium (Pseudomonas putida) for amelioration of arsenic toxicity in rice (Oryza sativa): a promising and feasible approach. Environ Exp Bot. 150:115–126. doi:10.1016/j.envexpbot.2018.03.001.
  • Awasthi S, Chauhan R, Srivastava S, Tripathi RD. 2017. The journey of arsenic from soil to grain in rice. Front Plant Sci. 8:1007. doi:10.3389/fpls.2017.01007.
  • Bali AS, Sidhu GPS. 2021. Arsenic acquisition, toxicity and tolerance in plants – from physiology to remediation: a review. Chemosphere. 283:131050. doi:10.1016/j.chemosphere.2021.131050.
  • Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP. 2008. A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol. 6:26. doi:10.1186/1741-7007-6-26.
  • Bist V, Anand V, Srivastava S, Kaur J, Naseem M, Mishra S, Srivastava PK, Tripathi RD, Srivastava S. 2022. Alleviative mechanisms of silicon solubilizing Bacillus amyloliquefaciens mediated diminution of arsenic toxicity in rice. J Hazard Mater. 428:128170. doi:10.1016/j.jhazmat.2021.128170.
  • Cao Y, Sun D, Ai H, Mei H, Liu X, Sun S, Xu G, Liu Y, Chen Y, Ma LQ, et al. 2017. Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains. Environ Sci Technol. 51(21):12131–12138. doi:10.1021/acs.est.7b03028.
  • Chauhan R, Awasthi S, Indoliya Y, Chauhan AS, Mishra S, Agrawal L, Srivastava S, Dwivedi S, Singh PC, Mallick S, et al. 2020. Transcriptome and proteome analyses reveal selenium mediated amelioration of arsenic toxicity in rice (Oryza sativa L.). J Hazard Mater. 390:122122. doi:10.1016/j.jhazmat.2020.122122.
  • Chen Y, Hua C-Y, Chen J-X, Rathinasabapathi B, Cao Y, Ma LQ. 2019. Expressing Arsenite Antiporter PvACR3;1 in Rice (Oryza sativa L.) Decreases Inorganic Arsenic Content in Rice Grains. Environ Sci Technol. 53(17):10062–10069. doi:10.1021/acs.est.9b02418.
  • Das N, Bhattacharya S, Bhattacharyya S, Maiti MK. 2017. Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses. Plant Mol Biol. 94(1–2):167–183. doi:10.1007/s11103-017-0600-1.
  • Das N, Bhattacharya S, Bhattacharyya S, Maiti MK. 2018. Expression of rice MATE family transporter OsMATE2 modulates arsenic accumulation in tobacco and rice. Plant Mol Biol. 98(1–2):101–120. doi:10.1007/s11103-018-0766-1.
  • Dave R, Singh PK, Tripathi P, Shri M, Dixit G, Dwivedi S, Chakrabarty D, Trivedi PK, Sharma YK, Dhankher OP, et al. 2013. Arsenite tolerance is related to proportional thiolic metabolite synthesis in rice (Oryza sativa L.). Arch Environ Contam Toxicol. 64(2):235–242. doi:10.1007/s00244-012-9818-8.
  • Deng F, Yamaji N, Ma JF, Lee SK, Jeon JS, Martinoia E, et al. 2018. Engineering rice with lower grain arsenic. Plant Biotechnol J. 16(10):1691-1699. doi:10.1111/pbi.12905.
  • Duan G, Kamiya T, Ishikawa S, Arao T, Fujiwara T. 2012. Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant Cell Physiol. 53(1):154–163. doi:10.1093/pcp/pcr161.
  • Duan G, Shao G, Tang Z, Chen H, Wang B, Tang Z, Yang Y, Liu Y, Zhao F-J. 2017. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars. Rice. 10(1):9. doi:10.1186/s12284-017-0149-2.
  • Fei M, Jin Y, Jin L, Su J, Ruan Y, Wang F, Liu C, Sun C. 2020. Adaptation of rice to the Nordic climate yields potential for rice cultivation at most northerly site and the organic production of low-arsenic and high-protein rice. Front Plant Sci. 11:329. doi:10.3389/fpls.2020.00329.
  • Fernandez-Baca CP, McClung AM, Edwards JD, Codling EE, Reddy VR, Barnaby JY. 2020. Grain inorganic arsenic content in rice managed through targeted introgressions and irrigation management. Front Plant Sci. 11:612054. doi:10.3389/fpls.2020.612054.
  • Hayashi S, Kuramata M, Abe T, Takagi H, Ozawa K, Ishikawa S. 2017. Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains. Plant J. 91(5):840–848. doi:10.1111/tpj.13612.
  • Kamiya T, Islam R, Duan G, Uraguchi S, Fujiwara T. 2013. Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Sci Plant Nutr. 59(4):580–592. doi:10.1080/00380768.2013.804390.
  • Katsuhara M, Sasano S, Horie T, Matsumoto T, Rhee J, Shibasaka M. 2014. Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnol. 31(3):213–219. doi:10.5511/plantbiotechnology.14.0421a.
  • Kumarathilaka P, Bundschuh J, Seneweera S, Ok YS. 2021. Rice genotype's responses to arsenic stress and cancer risk: the effects of integrated birnessite-modified rice hull biochar-water management applications. Sci Total Environ. 768:144531. doi:10.1016/j.scitotenv.2020.144531.
  • Kumarathilaka P, Seneweera S, Meharg A, Bundschuh J. 2018. Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors – a review. Water Res. 140:403–414. doi:10.1016/j.watres.2018.04.034.
  • Kumari P, Rastogi A, Shukla A, Srivastava S, Yadav S. 2018. Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. Chemosphere. 211:397–406. doi:10.1016/j.chemosphere.2018.07.152.
  • Kuramata M, Abe T, Kawasaki A, Ebana K, Shibaya T, Yano M, Ishikawa S. 2013. Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains. Rice. 6(1):3. doi:10.1186/1939-8433-6-3.
  • Kuramata M, Abe T, Matsumoto S, Ishikawa S. 2011. Arsenic accumulation and speciation in Japanese paddy rice cultivars. Soil Sci Plant Nutr. 57(2):248–258. doi:10.1080/00380768.2011.565479.
  • Liu X, Chen S, Chen M, Zheng G, Peng Y, Shi X, Qin P, Xu X, Teng, S, 2019. Association study reveals genetic loci responsible for arsenic, cadmium and lead accumulation in rice grain in contaminated farmlands. Front Plant Sci. 10:61. doi:10.3389/fpls.2019.00061.
  • Ma C, Hao Y, Zhao J, Zuverza-Mena N, Meselhy AG, Dhankher OP, Rui Y, White JC, Xing B. 2021. Graphitic carbon nitride (C3N4) reduces cadmium and arsenic phytotoxicity and accumulation in rice (Oryza sativa L.). Nanomaterials. 11(4):839. doi:10.3390/nano11040839.
  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH. 2008. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci. 105:9931–9935.
  • Maity JP, Chen C-Y, Bhattacharya P, Sharma RK, Ahmad A, Patnaik S, Bundschuh J. 2021. Arsenic removal and mitigation options by advanced application of nano-technological and biological processes. J Hazard. Mat. 405:123885. doi:10.1016/j.jhazmat.2020.123885.
  • Meng X-Y, Qin J, Wang L-H, Duan G-L, Sun G-X, Wu H-L, Chu C-C, Ling H-Q, Rosen BP, Zhu Y-G, et al. 2011. Arsenic biotransformation and volatilization in transgenic rice. New Phytol. 191(1):49–56. doi:10.1111/j.1469-8137.2011.03743.x.
  • Meselhy AG, Sharma S, Guo Z, Singh G, Yuan H, Tripathi RD, Xing B, Musante C, White JC, Dhankher OP. 2021. Nanoscale sulfur improves plant growth and reduces arsenic toxicity and accumulation in rice (Oryza sativa L.). Environ Sci Technol. 55(20):13490–13503. doi:10.1021/acs.est.1c05495.
  • Murugaiyan V, Ali J, Mahender A, Aslam UM, Jewel ZA, Pang Y, Marfori-Nazarea CM, Wu LB, Frei M, Li Z. 2019. Mapping of genomic regions associated with arsenic toxicity stress in a backcross breeding populations of rice (Oryza sativa L.). Rice. 12(1):61. doi:10.1186/s12284-019-0321-y.
  • Norton GJ, Deacon CM, Xiong LZ, Huang SY, Meharg AA, Price AH. 2010. Genetic mapping of the rice ionome in leaves and grain: identifi cation of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil. 329(1–2):139–153. doi:10.1007/s11104-009-0141-8.
  • Norton GJ, Douglas A, Lahner B, Yakubova E, Guerinot ML, Pinson SRM, Tarpley L, Eizenga GC, McGrath SP, Zhao FJ, et al. 2014. Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites. PLOS One. 9(2):e89685.
  • Norton GJ, Islam MR, Deacon CM, Zhao FJ, Stroud JL, McGrath SP, Islam S, Jahiruddin M, Feldmann J, Price AH, et al. 2009. Identification of low inorganic and total grain arsenic rice cultivars from Bangladesh. Environ Sci Technol. 43(15):6070–6075. doi:10.1021/es901121j.
  • Norton GJ, Travis AJ, Talukdar P, Hossain M, Islam MR, Douglas A, Price AH. 2019. Genetic loci regulating arsenic content in rice grains when grown flooded or under alternative wetting and drying irrigation. Rice. 12(1):54. doi:10.1186/s12284-019-0307-9.
  • Pillai TR, Yan WG, Agrama HA, James WD, Ibrahim AMH, McClung AM, Gentry TJ, Loeppert RH. 2010. Total grain-arsenic and arsenic-species concentrations in diverse rice cultivars under fl ooded conditions. Crop Sci. 50(5):2065–2075. doi:10.2135/cropsci2009.10.0568.
  • Pommerrenig B, Diehn TA, Bienert GP. 2015. Metalloido-porins: essentiality of nodulin 26-like intrinsic proteins in metalloid transport. Plant Sci. 238:212–227. doi:10.1016/j.plantsci.2015.06.002.
  • Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Guerinot ML. 2017. Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total Environ. 581–582:209–220. doi:10.1016/j.scitotenv.2016.12.111.
  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C. 2006. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci USA. 103(7):2075–2080. doi:10.1073/pnas.0506836103.
  • Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE, Chao D-Y, Zhao F-J. 2016. OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol. 172(3):1708–1719., doi:10.1104/pp.16.01332.
  • Shri M, Dave R, Diwedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D. 2014. Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep. 4:5784. doi:10.1038/srep05784.
  • Siddiqui MH, Alamri S, Khan MN, Corpas FJ, Al-Amri AA, Alsubaie QD, Ali HM, Kalaji HM, Ahmad P. 2020. Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J Hazard Mater. 398:1–16.
  • Singh AP, Dixit G, Kumar A, Mishra S, Kumar N, Dixit S, Singh PK, Dwivedi S, Trivedi PK, Pandey V, et al. 2017. A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.). Plant Physiol Biochem. 115:163–173. doi:10.1016/j.plaphy.2017.02.019.
  • Singh PK, Chakrabarty D, Dwivedi S, Kumar A, Singh SP, Sinam G, Niranjan A, Singh PC, Chatterjee S, Majumdar D, et al. 2022. Nitric oxide-mediated alleviation of arsenic stress involving metalloid detoxification and physiological responses in rice (Oryza sativa L.). Environ Pollut. 297:118694. doi:10.1016/j.envpol.2021.118694.
  • Singh S, Karwadiya J, Srivastava S, Patra PK, Venugopalan VP. 2022. Potential of indigenous plant species for phytoremediation of arsenic contaminated water and soil. Ecol Eng. 175:106476. doi:10.1016/j.ecoleng.2021.106476.
  • Singh S, Mishra H, Suprasanna P. 2021. Evaluation of arsenic remediation, morphological and biochemical response by Vetiveria zizanoides L. plants grown on artificially arsenic contaminated soil: a field study. Ecol Eng. 168:106267. doi:10.1016/j.ecoleng.2021.106267.
  • Song W-Y, Yamaki T, Yamaji N, Ko D, Jung K-H, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF, et al. 2014. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci USA. 111(44):15699–15704. doi:10.1073/pnas.1414968111.
  • Srivastava S, Pathak S, Ponsin M, Hensawang S, Chanpiwat P, Yoeurn C, Phan K. 2021. A review on sustainable solutions for tackling arsenic-rice problem in South and Southeast Asia. Crop Pasture Sci. 73(2):CP21033. doi:10.1071/CP21033.
  • Sun S-K, Chen Y, Che J, Konishi N, Tang Z, Miller AJ, Ma JF, Zhao F-J. 2018. Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots. New Phytol. 219(2):641–653. doi:10.1111/nph.15190.
  • Sun S-K, Xu X, Tang Z, Tang Z, Huang X-Y, Wirtz M, Hell R, Zhao F-J. 2021. A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain. Nat Commun. 12(1):1392. doi:10.1038/s41467-021-21282-5.
  • Sundaram S, Wu S, Ma LQ, Rathinasabapathi, B, 2009. Expression of a Pteris vittata glutaredoxin PvGRX5 in transgenic Arabidopsis thaliana increases plant arsenic tolerance and decreases arsenic accumulation in the leaves. Plant Cell Environ. 32(7):851–858. doi:10.1111/j.1365-3040.2009.01963.x.
  • Syu CH, Huang CC, Jiang PY, Lee CH, Lee DY. 2015. Arsenic accumulation and speciation in rice grains influenced by arsenic phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils. J Hazar Mater. 286:179–186. doi:10.1016/j.jhazmat.2014.12.052.
  • Tang Z, Chen Y, Miller AJ, Zhao F-J. 2019. The C-type ATP-Binding Cassette Transporter OsABCC7 Is Involved in the Root-to-Shoot Translocation of Arsenic in Rice. Plant Cell Physiol. 60(7):1525–1535. doi:10.1093/pcp/pcz054.
  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ. 2007. Arsenic hazards: Strategies for tolerance and remediation by plants. Trends Biotechnol. 25(4):158–165. doi:10.1016/j.tibtech.2007.02.003.
  • Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF. 2010. Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA. 107(38):16500–16505. doi:10.1073/pnas.1005396107.
  • Upadhyay MK, Majumdar A, Barla A, Bose S, Srivastava S. 2021. Thiourea supplementation mediated reduction of grain arsenic in rice (Oryza sativa L.) cultivars: a two year field study. J Hazard Mater. 407:124368. doi:10.1016/j.jhazmat.2020.124368.
  • Upadhyay MK, Majumdar A, Kumar JS, Srivastava S. 2020. Arsenic in rice agro-ecosystem: Solutions for safe and sustainable rice production. Front Sustain Food Syst. 4:53.
  • Upadhyay MK, Yadav P, Shukla A, Srivastava S. 2018. Utilizing the potential of microorganisms for managing arsenic contamination: A feasible and sustainable approach. Front Environ Sci. 6:24. doi:10.3389/fenvs.2018.00024.
  • Verma PK, Verma S, Tripathi RD, Chakrabarty D. 2020. A rice glutaredoxin regulates the expression of aquaporin genes and modulates root responses to provide arsenic tolerance. Ecotoxicol Environ Saf. 195:110471.
  • Verma PK, Verma S, Pande V, Mallick S, Deo Tripathi R, Dhankher OP, Chakrabarty D. 2016. Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2.1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana. Front Plant Sci. 7:740. doi:10.3389/fpls.2016.00740.
  • Verma S, Verma PK, Meher AK, Bansiwal AK, Tripathi RD, Chakrabarty D. 2018. A novel fungal arsenic methyltransferase, WaarsM reduces grain arsenic accumulation in transgenic rice (Oryza sativa L.). Jof. J Hazard Mater. 344:626–634. doi:10.1016/j.jhazmat.2017.10.037.
  • Wang F-Z, Chen M-X, Yu L-J, Xie L-J, Yuan L-B, Qi H, Xiao M, Guo W, Chen Z, Yi K, et al. 2017. OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Front Plant Sci. 8:1868. doi:10.3389/fpls.2017.01868.
  • Wang P, Xu X, Tang Z, Zhang W, Huang X-Y, Zhao F-J. 2018. OsWRKY28 regulates phosphate and arsenate accumulation, root system architecture and fertility in rice. Front Plant Sci. 9:1330. doi:10.3389/fpls.2018.01330.
  • Wang P, Zhang W, Mao C, Xu G, Zhao FJ. 2016. The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. J Exp Bot. 67(21):6051–6059. doi:10.1093/jxb/erw362.
  • Wang Y, Lv K, Shi C, Li Y, Chen X, Cheng J, Fang X, Yu X. 2020. Variation in arsenic accumulation and translocation among 74 main rice cultivars in Jiangsu Province, China. Environ Sci Pollut Res Int. 27(21):26249–26261. doi:10.1007/s11356-020-08994-9.
  • Wu C, Ye ZH, Shu WS, Zhu YG, Wong MH. 2011. Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes. J Exp Bot. 62(8):2889–2898. doi:10.1093/jxb/erq462.
  • Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ. 2011. Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol. 157(1):498–508. doi:10.1104/pp.111.178921.
  • Wysocki R, Bobrowicz P, Ułaszewski S. 1997. The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem. 272(48):30061–30066. doi:10.1074/jbc.272.48.30061.
  • Xu J, Shi S, Wang L, Tang Z, Lv T, Zhu X, Ding X, Wang Y, Zhao F-J, Wu Z, et al. 2017. OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytol. 215(3):1090–1101. doi:10.1111/nph.14572.
  • Yang HC, Rosen BP. 2016. New mechanisms of bacterial arsenic resistance. Biomed J. 39(1):5–13. doi:10.1016/j.bj.2015.08.003.
  • Yang J, Gao M-X, Hu H, Ding X-M, Lin H-W, Wang L, Xu J-M, Mao C-Z, Zhao F-J, Wu Z-C, et al. 2016. OsCLT1, a CRT-like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice . New Phytol. 211(2):658–670. doi:10.1111/nph.13908.
  • Ye XX, Sun B, Yin YL. 2012. Variation of As concentration between soil types and rice genotypes and the selection of cultivars for reducing As in the diet. Chemosphere. 87(4):384–389. doi:10.1016/j.chemosphere.2011.12.028.
  • Zhang J, Zhu YG, Zeng DL, Cheng WD, Qian Q, Duan GL. 2008. Mapping quantitative trait loci associated with arsenic accumulation in rice (Oryza sativa). New Phytol. 177(2):350–355. doi:10.1111/j.1469-8137.2007.02267.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.