156
Views
1
CrossRef citations to date
0
Altmetric
Articles

Phytoremediation of crude oil-contaminated sediment using Suaeda heteroptera enhanced by Nereis succinea and oil-degrading bacteria

, , , , , & show all

References

  • Ahmad F, Iqbal S, Anwar S, Afzal M, Islam E, Mustafa T, Khan QM. 2012. Enhanced remediation of chlorpyrifos from soil using ryegrass (Lollium multiflorum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1. J Hazard Mater. 30:237–238.
  • Ahrens MJ, Hertz J, Lamoureux EM, Lopez GR, McElroy AE, Brownawell BJ. 2001. The effect of body size on digestive chemistry and absorption efficiencies of food and sediment-bound organic contaminants in Nereis succinea (Polychaeta). J Exp Mar Biol Ecol. 263(2):185–209. doi:10.1016/S0022-0981(01)00305-7.
  • Al-Baldawi IA, Abdullah SRS, Anuar N, Suja F, Mushrifah I. 2015. Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecol Eng. 74:463–473. doi:10.1016/j.ecoleng.2014.11.007.
  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere. 91(7):869–881. doi:10.1016/j.chemosphere.2013.01.075.
  • Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KL, Coats JR. 2005. Phytoremediation – an overview. Crit Rev Plant Sci. 24(2):109–122. doi:10.1080/07352680590952496.
  • Atlas RM. 1981. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev. 45(1):180–209. doi:10.1128/mr.45.1.180-209.1981.
  • Barron MG, Vivian DN, Heintz RA, Yim UH. 2020. Long-term ecological impacts from oil spills: comparison of exxon valdez, hebei spirit, and deepwater horizon. Environ Sci Technol. 54(11):6456–6467. doi:10.1021/acs.est.9b05020.
  • Bhaduri AM, Fulekar MH. 2012. Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Biotechnol. 11(1):55–69. doi:10.1007/s11157-011-9251-x.
  • Bonaglia S, Broman E, Brindefalk B, Hedlund E, Hjorth T, Rolff C, Nascimento FJA, Udekwu K, Gunnarsson JS. 2020. Activated carbon stimulates microbial diversity and PAH biodegradation under anaerobic conditions in oil-polluted sediments. Chemosphere. 248:126023. doi:10.1016/j.chemosphere.2020.126023.
  • Collins CD. 2007. Implementing phytoremediation of petroleum hydrocarbons. In Willey N, editor Methods in biotechnology 23: phytoremediation: methods and reviews. Totowa, NJ, Humana Press Inc. p. 99–108.
  • Doty SL, Freeman JL, Cohu CM, Burken JG, Firrincieli A, Simon A, Khan Z, Isebrands JG, Lukas J, Blaylock MJ. 2017. Enhanced degradation of TCE on a superfund site using endophyte-assisted poplar tree phytoremediation. Environ Sci Technol. 51(17):10050–10058. doi:10.1021/acs.est.7b01504.
  • Fatima K, Imran A, Amin I, Khan QM, Afzal M. 2018. Successful phytoremediation of crude-oil contaminated soil at an oil exploration and production company by plants-bacterial synergism. Int J Phytoremed. 20(7):675–681. doi:10.1080/15226514.2017.1413331.
  • Gao YZ, Li H, Gong SS. 2012. Ascorbic acid enhances the accumulation of polycyclic aromatic hydrocarbons (PAHs) in roots of tall fescue (Festuca arundinacea Schreb.) PLoS One. 7(11):e50467. doi:10.1371/journal.pone.0050467.
  • He J, Wang QZ, He XT, Chen X, Liu CF, Zhou YB. 2019. Distribution of Cu fraction in sediments using Suaeda heteroptera-Nereis succinea combination: a greenhouse study. Int J Phytoremediation. 21(2):129–137. doi:10.1080/15226514.2018.1488807.
  • Hu N, Lang T, Ding DX, Hu JS, Li CW, Zhang H, Li GY. 2019. Enhancement of repeated applications of chelates on phytoremediation of uranium contaminated soil by Macleaya cordata. J Environ Radioact. 199-200:58–65. doi:10.1016/j.jenvrad.2018.12.023.
  • IEA. 2011. Annual Statistical Supplement with 2010 Data. Oil Mark. Rep. http://omrpublic.iea.org/omrarchive/sup2011.pdf.
  • John KS, Bhat SG, Rao UJSP. 2011. Isolation and partial characterization of phenol oxidases from Mangifera indica L sap (latex). J Mol Catal B Enzym. 68(1):30–36. doi:10.1016/j.molcatb.2010.09.004.
  • Khan Z, Roman D, Kintz T, delas Alas M, Yap R, Doty S. 2014. Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1. Environ Sci Technol. 48(22):13557–13557. doi:10.1021/es505252v.
  • Khaokaew S, Landrot G. 2015. A field-scale study of cadmium phytoremediation in a contaminated agricultural soil at Mae Sot District, Tak Province, Thailand: (1) determination of Cd-hyperaccumulating plants. Chemosphere. 138:883–887. doi:10.1016/j.chemosphere.2014.09.108.
  • Kiamarsi Z, Kafi M, Soleimani M, Nezami A, Lutts S. 2020. Conjunction of Vetiveria zizanioides L. and oil-degrading bacteria as a promising technique for remediation of crude oil-contaminated soils. J Clean Prod. 253:119719. doi:10.1016/j.jclepro.2019.119719.
  • Lai HY. 2015. Subcellular distribution and chemical forms of cadmium in Impatiens walleriana in relation to its phytoextraction potential. Chemosphere. 138:370–376. doi:10.1016/j.chemosphere.2015.06.047.
  • Li C, Wang ML, Luo XG, Liang LL, Han X, Lin XY. 2019. Accumulation and effects of uranium on aquatic macrophyte Nymphaea tetragona Georgi: potential application to phytoremediation and environmental monitoring. J Environ Radioact. 198:43–49. doi:10.1016/j.jenvrad.2018.12.018.
  • Li H, Li X, Xiang L, Zhao HM, Li YW, Cai QY, Zhu L, Mo CH, Wong MH. 2018. Phytoremediation of soil co-contaminated with Cd and BDE-209 using hyperaccumulator enhanced by AM fungi and surfactant. Sci Total Environ. 613-614:447–455. doi:10.1016/j.scitotenv.2017.09.066.
  • Lim MW, Von Lau E, Poh PE. 2016. A comprehensive guide of remediation technologies for oil contaminated soil-Present works and future directions. Mar Pollut Bull. 109(1):14–45.
  • Ling WT, Lu XD, Gao YZ, Liu J, Sun YD. 2012. Polyphenol oxidase activity in subcellular fractions of tall fescue contaminated by polycyclic aromatic hydrocarbons. J Environ Qual. 41(3):807–813. doi:10.2134/jeq2011.0461.
  • Liu D, Zhu L. 2014. Assessing China's legislation on compensation for marine ecological damage: a case study of the Bohai oil spill. Mar Policy. 50:18–26. doi:10.1016/j.marpol.2014.05.009.
  • Liu X, Guo J, Guo MX, Hu XK, Tang C, Wang CY, Xing QG. 2015. Modelling of oil spill trajectory for 2011 Penglai 19-3 coastal drilling field, China. Appl Math Model. 39(18):5331–5340. doi:10.1016/j.apm.2014.10.063.
  • Liu XL, Zhang LB, You LP, Wu HF, Zhao JM, Cong M, Li F, Wang Q, Li LZ, Li CH, et al. 2011. Metabolomic study on the halophyte Suaeda salsa in the Yellow River Delta. Clean Soil Air Water. 39(8):720–727. doi:10.1002/clen.201000515.
  • Lu YF, Lu M. 2015. Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms. J Hazard Mater. 285:535–541. doi:10.1016/j.jhazmat.2014.07.021.
  • Moreira ITA, Oliveira OMC, Triguis JA, dos Santos AMP, Queiroz AFS, Martins CMS, Silva CS, Jesus RS. 2011. Phytoremediation using Rhizophora mangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPHs). Microchem J. 99(2):376–382. doi:10.1016/j.microc.2011.06.011.
  • Mukome FND, Buelow MC, Shang JT, Peng J, Rodriguez M, Mackay DM, Pignatello JJ, Sihota N, Hoelen TP, Parikh SJ. 2020. Biochar amendment as a remediation strategy for surface soils impacted by crude oil. Environ Pollut. 265(Pt B):115006. doi:10.1016/j.envpol.2020.115006.
  • Oleszczuk P, Rakowska M, Bucheli TD, Godlewska P, Reible DD. 2019. Combined effects of plant cultivation and sorbing carbon amendments on freely dissolved PAHs in contaminated soil. Environ Sci Technol. 53(9):4860–4868. doi:10.1021/acs.est.8b06265.
  • Peng SW, Zhou QX, Cai Z, Zhang ZN. 2009. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. J Hazard Mater. 168(2-3):1490–1496. doi:10.1016/j.jhazmat.2009.03.036.
  • Pilon-Smits E. 2005. Phytoremediation. Annu Rev Plant Biol. 56:15–39. doi:10.1146/annurev.arplant.56.032604.144214.
  • Rehman K, Imran A, Amin I, Afzal M. 2019. Enhancement of oil field-produced wastewater remediation by bacterially-augmented floating treatment wetlands. Chemosphere. 217:576–583. doi:10.1016/j.chemosphere.2018.11.041.
  • Ribeiro H, Almeida CMR, Mucha AP, Teixeira C, Bordalo AA. 2013. Influence of natural rhizosediments characteristics on hydrocarbons degradation potential of microorganisms associated to Juncus maritimus roots. Int Biodeterior Biodegrad. 84:86–96. doi:10.1016/j.ibiod.2012.05.039.
  • Shahid M, Ferrand E, Schreck E, Dumat C, Nadeem M, Aslam M, Pinelli E. 2013. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol. 232:1–44.
  • Sheppard PJ, Adetutu EM, Makadia TH, Ball AS. 2011. Microbial community and ecotoxicity analysis of bioremediated, weathered hydrocarbon-contaminated soil. Soil Res. 49(3):261–269. doi:10.1071/SR10159.
  • Song HL, Sun ZG. 2014. Temporal variations and bioaccumulation of heavy metals in different Suaeda salsa marshes of the Yellow River estuary, China. Environ Sci Pollut Res Int. 21(24):14174–14187. doi:10.1007/s11356-014-3296-7.
  • Song W, Vidonish JE, Kamath R, Yu PF, Chu C, Moorthy B, Gao BY, Zygourakis K, Alvarez PJJ. 2019. Pilot-scale pyrolytic remediation of crude-oil-contaminated soil in a continuously-fed reactor: treatment intensity trade-offs. Environ Sci Technol. 53(4):2045–2053. doi:10.1021/acs.est.8b05825.
  • Tang JC, Wang RG, Niu XW, Zhou QX. 2010. Enhancement of soil petroleum remediation by using a combination of ryegrass (Lolium perenne) and different microorganisms. Soil till Res. 110(1):87–93. doi:10.1016/j.still.2010.06.010.
  • Tao S, Jiao XC, Chen SH, Liu WX, Coveney RM, Zhu LZ, Luo YM. 2006. Accumulation and distribution of polycyclic aromatic hydrocarbons in rice (Oryza sativa). Environ Pollut. 140(3):406–415. doi:10.1016/j.envpol.2005.08.004.
  • Teng Y, Shen YY, Luo YM, Sun XH, Sun MM, Fu DQ, Li ZG, Christie P. 2011. Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. J Hazard Mater. 186(2-3):1271–1276. doi:10.1016/j.jhazmat.2010.11.126.
  • Van Aken B, Correa PA, Schnoor JL. 2010. Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol. 44(8):2767–2776. doi:10.1021/es902514d.
  • Wang Z, Fingas M, Li K. 1994. Fractionation of a light crude oil and identification and quantitation of aliphatic, aromatic, and biomarker compounds by GC-FID and GC-MS, part II. J Chromatogr Sci. 32(9):367–382. doi:10.1093/chromsci/32.9.367.
  • Yu XZ, Wu SC, Wu FY, Wong MH. 2011. Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. J Hazard Mater. 186(2-3):1206–1217. doi:10.1016/j.jhazmat.2010.11.116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.