218
Views
0
CrossRef citations to date
0
Altmetric
Articles

Phytoremediation of soil contaminated with weathered petroleum hydrocarbons by applying mineral fertilization, an anionic surfactant, or hydrocarbonoclastic bacteria

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Abed RMM, Al-Sabahi J, Al-Maqrashi F, Al-Habsi A, Al-Hinai M. 2014. Characterization of hydrocarbon-degrading bacteria isolated from oil-contaminated sediments in the Sultanate of Oman and evaluation of bioaugmentation and biostimulation approaches in microcosm experiments. Int Biodeter Biodegrad. 89:58–66. doi:10.1016/j.ibiod.2014.01.006.
  • Adams OG, Tawari FP, Okoro SE, Ehinomen I. 2020. Bioremediation, biostimulation and bioaugmentation: a review. IJEBB. 3(1):28–39. doi:10.12691/ijebb-3-1-5.
  • Afzal M, Khan MQ, Sessitsch A. 2014. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere. 117:232–242. doi:10.1016/j.chemosphere.2014.06.078.
  • Afzal M, Khan S, Iqbal S, Mirza MS, Khan QM. 2013. Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel-contaminated soil. Int Biodeter Biodegrad. 85:331–336. doi:10.1016/j.ibiod.2013.08.022.
  • Agnello AC, Huguenot D, van Hullebusch ED, Esposito G. 2015. Phytotoxicity of citric acid and tween® 80 for potential use as soil amendments in enhanced phytoremediation. Int J Phytoremediation. 17(7):669–677. doi:10.1080/15226514.2014.964837.
  • Agnello AC, Huguenot D, Van Hullebusch ED, Esposito G. 2016. Citric acid- and Tween(®) 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential. Environ Sci Pollut Res Int. 23(9):9215–9226. doi:10.1007/s11356-015-5972-7.
  • Alarcón A, Davies FT, Autenrieth RL, Zuberer DA. 2008. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil. Int J Phytoremediation. 10:251–263. doi:10.1080/15226510802096002.
  • Al-Baldawi IA, Abdullah SRS, Anuar N, Mushrifah I. 2017. Bioaugmentation for the enhancement of hydrocarbon phytoremediation by rhizobacteria consortium in pilot horizontal subsurface flow constructed wetlands. Int J Environ Sci Technol. 14(1):75–84. doi:10.1007/s13762-016-1120-2.
  • Alexander M. 1983. Most probable number method for microbial populations. In: Page A, editor. Methods of soil analysis. doi:10.2134/agronmonogr9.2.2ed.c39.
  • Al-Mailem DM, Al-Deieg M, Eliyas M, Radwan SS. 2017. Biostimulation of indigenous microorganisms for bioremediation of oily hypersaline microcosms from the Arabian Gulf Kuwaiti coasts. J Environ Manage. 193:576–583. doi:10.1016/j.jenvman.2017.02.054.
  • Ayolagha GA, Peter KD, Ebie SJ. 2013. Effect of remediation of crude oil polluted inceptisols on maize (Zea mays) production using organic and inorganic fertilizers at Yenagoa, Bayelsa State. Int J Soil Sci. 8(2):47–57. doi:10.3923/ijss.2013.47.57.
  • Balseiro-Romero M, Gkorezis P, Kidd PS, Vangronsveld J, Monterroso C. 2016. Enhanced degradation of diesel in the rhizosphere of after inoculation with diesel-degrading and plant growth-promoting bacterial strains. J Environ Qual. 45(3):924–932. doi:10.2134/jeq2015.09.0465.
  • Barati M, Bakhtiari F, Mowla D, Safarzadeh S. 2017. Total petroleum hydrocarbon degradation in contaminated soil as affected by plants growth and biochar. Environ Earth Sci. 76(20):688. doi:10.1007/s12665-017-7017-7.
  • Benson A, Gomathi R, Allen J, Manoharan MJ. 2017. Inoculation of 1-aminocyclopropane-1-carboxylate deaminase–producing bacteria along with biosurfactant application enhances the phytoremediation efficiency of Medicago sativa in hydrocarbon-contaminated soils. Biorem J. 21(1):20–29. doi:10.1080/10889868.2017.1282934.
  • Bento MF, Camargo FAO, Okeke BC, Frankenberger WT. 2005. Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res. 160(3):249–255. doi:10.1016/j.micres.2004.08.005.
  • Bezza FA, Chirwa EMN. 2016. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere. 144:635–644. doi:10.1016/j.chemosphere.2015.08.027.
  • Bordoloi S, Basumatary B. 2015. Phytoremediation of hydrocarbon-contaminated soil using sedge species. In: Ansari A, Gill S, Gill R, Lanza G, Newman L, editors. Phytoremediation. Cham: Springer. doi:10.1007/978-3-319-10395-2_19.
  • Cartmill AD, Cartmill DL, Alarcón A. 2013. Short-term biodegradation of petroleum in planted and unplanted sandy soil. J Environ Qual. 42(4):1080–1085. doi:10.2134/jeq2013.03.0078.
  • Castiglione MR, Giorgetti L, Becarelli S, Siracusa G, Lorenzi R, Di Gregorio S. 2016. Polycyclic aromatic hydrocarbon-contaminated soils: bioaugmentation of autochthonous bacteria and toxicological assessment of the bioremediation process by means of Vicia faba L. Environ Sci Pollut Res Int. 23(8):7930–7941. doi:10.1007/s11356-016-6049-y.
  • Cheema SA, Khan MI, Tang X, Shen C, Farooq M, Chen Y. 2016. Surfactant enhanced pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea). Environ Sci Pollut Res Int. 23(18):18129–18136. doi:10.1007/s11356-016-6987-4.
  • CONAGUA. 2014. Normales Climatológicas por Estación [accessed 2016 Jan 6]. http://smn.cna.gob.mx/index.php?optionDcom_content&viewDarticle&idD168&tmplDcomponent.
  • Cookson JT. 1995. Bioremediation engineering design and application. Appendix B. New York (NY): McGrawHill. p. 524.
  • Crisafi F, Genovese M, Smedile F, Russo D, Catalfamo M, Yakimov M, Giuliano L, Denaro R. 2016. Bioremediation technologies for polluted seawater sampled after an oil-spill in Taranto Gulf (Italy): a comparison of biostimulation, bioaugmentation and use of a washing agent in microcosm studies. Mar Pollut Bull. 106(1–2):119–126. doi:10.1016/j.marpolbul.2016.03.017.
  • Das R, Tiwary BN. 2014. Production of indole acetic acid by a novel bacterial strain of Planomicrobium chinense isolated from diesel oil contaminated site and its impact on the growth of Vigna radiata. Eur J Soil Biol. 62:92–100. doi:10.1016/j.ejsobi.2014.02.012.
  • de Bashan LE, Hernandez J-P, Bashan Y. 2012. The potential contribution of plant growth-promoting bacteria to reduce environmental degradation- a comprehensive evaluation. Appl Soil Ecol. 61:171–189. doi:10.1016/j.apsoil.2011.09.003.
  • de la Cueva SC, Rodríguez CH, Cruz NOS, Contreras JAR, Miranda JL. 2016. Changes in bacterial populations during bioremediation of soil contaminated with petroleum hydrocarbons. Water, Air, Soil Pollut. 227:91. doi:10.1007/s11270-016-2789-z.
  • Díaz-Martínez ME, Alarcón A, Ferrera-Cerrato R, Almaraz-Suarez JJ, García-Barradas O. 2013. Crecimiento de casuarina equisetifolia (Casuarinaceae) en suelo con diésel, y aplicación de bioestimulación y bioaumentación. Rev Biol Trop. 61:1039–1052.
  • dos Santos JJ, Maranho LT. 2018. Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum: a review. J Environ Manage. 210:104–113. doi:10.1016/j.jenvman.2018.01.015.
  • Dudai N, Tsion I, Shamir SZ, Nitzan N, Chaimovitsh D, Shachter A, Haim A. 2018. Agronomic and economic evaluation of Vetiver grass (Vetiveria zizanioides L.) as means for phytoremediation of diesel polluted soils in Israel. J Environ Manag. 211:247–255. doi:10.1016/j.jenvman.2018.01.013.
  • Fatima K, Imran A, Amin I, Khan QM, Afzal M. 2016. Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil. Environ Sci Pollut Res Int. 23(7):6188–6196. doi:10.1007/s11356-015-5845-0.
  • García-Sánchez M, Košnář Z, Mercl F, Aranda E, Tlustoš P. 2018. A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicol Environ Saf. 147:165–174. doi:10.1016/j.ecoenv.2017.08.012.
  • Glick BR, Penrose DM, Li J. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol. 190(1):63–68. doi:10.1006/jtbi.1997.0532.
  • Hutchinson SL, Banks MK, Schwab AP. 2001. Phytoremediation of aged petroleum sludge: effect of inorganic fertilizer. J Environ Qual. 30(2):395–403. doi:10.2134/jeq2001.302395x.
  • INEGI. 2017. Anuario estadístico y geográfico de Tabasco. Gobierno del estado de Tabasco [accessed 2017 Mar 16]. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825095123.
  • ISSS-ISRIC-FAO. 1998. World reference base for soil resources. Roma (Italia): ISSS-ISRIC-FAO. World Soil Resources Reports N°84.
  • Jiang Y, Brassington JK, Prpich G, Paton IG, Semple TK, Pollard JTS, Coulon F. 2016. Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation. Chemosphere. 161:300–307. doi:10.1016/j.chemosphere.2016.07.032.
  • Kaczorek E, Moszyńska S, Olszanowski A. 2011. Modification of cell surface properties of Pseudomonas alcaligenes S22 during hydrocarbon biodegradation. Biodegradation. 22(2):359–366. doi:10.1007/s10532-010-9406-4.
  • Kalantary RR, Badkoubi A, Mohseni-Bandpi A, Esrafili A, Jorfi S, Dehghanifard E, Baneshi MM. 2013. Modification of PAHs biodegradation with humic compounds. Soil Sediment Contam. 22(2):185–198. doi:10.1080/15320383.2013.722139.
  • Kogbara RB, Ogar I, Okparanma RN, Ayotamuno JM. 2016. Treatment of petroleum drill cuttings using bioaugmentation and biostimulation supplemented with phytoremediation. J Environ Sci Health A Tox Hazard Subst Environ Eng. 51(9):714–721. doi:10.1080/10934529.2016.1170437.
  • Kong FX, Sun GD, Liu ZP. 2018. Degradation of polycyclic aromatic hydrocarbons in soil mesocosms by microbial/plant bioaugmentation: performance and mechanism. Chemosphere. 198:83–91. doi:10.1016/j.chemosphere.2018.01.097.
  • Lang FS, Destain J, Delvigne F, Druart P, Ongena M, Thonart P. 2016. Biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments under different strategies: natural attenuation, biostimulation, and bioaugmentation with Rhodococcus erythropolis T902. 1. Water Air Soil Pollut. 227:297. doi:10.1007/s11270-016-2999-4.
  • Lewis MA. 1990. Chronic toxicities of surfactants and detergent builders to algae: a review and risk assessment. Ecotox Environ Safe. 20(2):123–140. doi:10.1016/0147-6513(90)90052-7.
  • Li H, Chen J, Lin J. 2014. Elevated critical micelle concentration in soil–water system and its implication on PAH removal and surfactant selecting. Environ Earth Sci. 71(9):3991–3998. doi:10.1007/s12665-013-2783-3.
  • Liao C, Liang X, Lu G, Thai T, Xu W, Dang Z., 2015. Ecotoxicology and environmental safety effect of surfactant amendment to PAHs-contaminated soil for phytoremediation by maize (Zea mays L.). Ecotoxicol Environ Saf. 112:1–6. doi:10.1016/j.ecoenv.2014.10.025.
  • Liao C, Xu W, Lu G, Deng F, Liang X, Guo C, Dang Z., 2016. Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zea mays. L). Ecol Eng. 92:10–17. doi:10.1016/j.ecoleng.2016.03.041.
  • Lladó S, Solanas AM, de Lapuente J, Borràs M, Viñas M. 2012. A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil. Sci Total Environ. 435-436:262–269. doi:10.1016/j.scitotenv.2012.07.032.
  • Lynch JM, Whipps JM. 1990. Substrate flow in the rhizosphere. Plant Soil. 129(1):1–10. doi:10.1007/BF00011685.
  • Madigan MT, Martiko JM, Dunlap PV, Clark PD. 2009. Brock: Biología de los Microorganismos. 12° Edición. Ed. Madrid (Spain): Pearson Educación.
  • Maletić SP, Dalmacija BD, Rončević SD, Agbaba JR, Perović SDU. 2011. Impact of hydrocarbon type, concentration and weathering on its biodegradability in soil. J Environ Sci Health A Tox Hazard Subst Environ Eng. 46(10):1042–1049. doi:10.1080/10934529.2011.590380.
  • McIntosh P, Schulthess CP, Kuzovkina YA, Guillard K. 2017. Bioremediation and phytoremediation of total petroleum hydrocarbons (TPH) under various conditions. Int J Phytoremediation. 19(8):755–764. doi:10.1080/15226514.2017.1284753.
  • McIntosh P, Yulia A, Schulthess KCP, Guillard K. 2016. Breakdown of low-level total petroleum hydrocarbons (TPH) in contaminated soil using grasses and willows. Int J Phytorem. 18(7):656–663. doi:10.1080/15226514.2015.1109598.
  • Morales-Guzmán G, Ferrera-Cerrato R, Rivera-Cruz MdC, Torres-Bustillos LG, Arteaga-Garibay RI, Mendoza-López MR, Esquivel-Cote R, Alarcón A. 2017. Diesel degradation by emulsifying bacteria isolated from soils polluted with weathered petroleum hydrocarbons. Appl Soil Ecol. 121:127–134. doi:10.1016/j.apsoil.2017.10.003.
  • Nikolopoulou M, Kalogerakis N. 2009. Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J Chem Technol Biotechnol. 84(6):802–807. doi:10.1002/jctb.2182.
  • Pacwa-Płociniczak M, Płociniczak T, Iwan J, Żarska M, Chorążewski M, Dzida M, Piotrowska-Seget Z. 2016. Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. J Environ Manage. 168:175–184. doi:10.1016/j.jenvman.2015.11.058.
  • Pérez-Hernández I, Ochoa-Gaona S, Adams RH, Rivera-Cruz MC, Pérez-Hernández V, Jarquín-Sánchez A, Geissen V, Martínez-Zurimendi P. 2017. Growth of four tropical tree species in petroleum-contaminated soil and effects of crude oil contamination. Environ Sci Pollut Res. 24(2):1769–1783. doi:10.1007/s11356-016-7877-5.
  • Pontes J, Mucha AP, Santos H, Reis I, Bordalo A, Basto MC, Bernabeu A, Almeida CMR. 2013. Potential of bioremediation for buried oil removal in beaches after an oil spill. Mar Pollut Bull. 76(1-2):258–265. doi:10.1016/j.marpolbul.2013.08.029.
  • Ramadass K, Megharaj M, Venkateswarlu K, Naidu R. 2018. Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: impact of bioaugmentation mediated by Pseudomonas spp. on bioremediation. Sci Total Environ. 636:968–974. doi:10.1016/j.scitotenv.2018.04.379.
  • Ramírez GRM, Urzúa HMC, Camacho CA, Tsuzuki RG, Esquivel-Cote R. 2015. Técnicas básicas de microbiología y su fundamento. México City (Mexico): Trillas, UNAM. DGAPA.
  • Reddy PV, Karegoudar TB, Nayak AS. 2018. Enhanced utilization of fluorene by Paenibacillus sp. PRNK-6: effect of rhamnolipid biosurfactant and synthetic surfactants. Ecotoxicol Environ Saf. 151:206–211. doi:10.1016/j.ecoenv.2018.01.019.
  • Rivera-Cruz MC, Trujillo-Narcía A, Miranda de la Cruz MA, Maldonado CE. 2005. Evaluación toxicológica de suelos contaminados con petróleo nuevo e intemperizado mediante ensayos con leguminosas. Interciencia. 30(6):326–331.
  • Rivera-Cruz MC, Trujillo-Narcia A, Trujillo-Rivera EA, Arias-Trinidad A, Mendoza-López MR. 2016. Natural attenuation of weathered oil using aquatic plants in a farm in Southeast Mexico. Int J Phytoremediation. 18(9):877–884. doi:10.1080/15226514.2016.1156632.
  • Rodríguez-Rodríguez N, Rivera-Cruz MC, Trujillo-Narcía A, Almaraz-Suárez JJ, Salgado-García S. 2016. Spatial distribution of oil and biostimulation through the rhizosphere of Leersia hexandra in degraded soil. Water Air Soil Pollut. 227:319. doi:10.1007/s11270-016-3030-9.
  • Roy A, Dutta A, Pal S, Gupta A, Sarkar J, Chatterjee A, Saha A, Sarkar P, Sar P, Kazy SK., 2018. Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge. Bioresour Technol. 253:22–32. doi:10.1016/j.biortech.2018.01.004.
  • Ruffini CM, Giorgetti L, Becarelli S, Siracusa G, Lorenzi R, Di Gregorio S. 2016. Polycyclic aromatic hydrocarbon-contaminated soils: bioaugmentation of autochthonous bacteria and toxicological assessment of the bioremediation process by means of Vicia faba L. Environ Sci Pollut Res Int. 23(8):7930–7941. doi:10.1007/s11356-016-6049-y.
  • Safdari M-S, Kariminia H-R, Rahmati M, Fazlollahi F, Polasko A, Mahendra S, Wilding WV, Fletcher TH., 2018. Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil. J Hazard Mater. 342:270–278. doi:10.1016/j.jhazmat.2017.08.044.
  • SAS Institute Inc. 2002. The SAS system for windows version 9.0. Cary (NC): SAS Institute Inc.
  • SEMARNAT. 2002. Official Mexican Norm NOM-021-RECNAT-2000, that establishes specifications of soil fertility, salinity and classification. Mexico: studies, sampling and analysis [accessed 2016 Jun 27]. http://www.ordenjuridico.gob.mx/documentos/federal/wo69255.pdf. [In Spanish].
  • Shahi A, Aydin S, Ince B, Ince O. 2016. The effects of white-rot fungi Trametes versicolor and Bjerkandera adusta on microbial community structure and functional genes during the bioaugmentation process following biostimulation practice of petroleum contaminated soil. Int Biodeter Biodeg. 114:67–74. doi:10.1016/j.ibiod.2016.05.021.
  • Shahsavari E, Adetutu EM, Taha M, Ball AS. 2015. Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat. J Environ Manage. 155:171–176. doi:10.1016/j.jenvman.2015.03.027.
  • Shahzad A, Saddiqui S, Bano A. 2016. The response of maize (Zea mays L.) plant assisted with bacterial consortium and fertilizer under oily sludge. Int J Phytoremediation. 18(5):521–526. doi:10.1080/15226514.2015.1115964.
  • Siles JA, Margesin R. 2018. Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site. Appl Microbiol Biotechnol. 102(10):4409–4421. doi:10.1007/s00253-018-8932-6.
  • Simarro R, González N, Bautista LF, Molina MC. 2013. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community. J Hazard Mater. 262:158–167. doi:10.1016/j.jhazmat.2013.08.025.
  • Suja F, Rahim F, Raihan TM, Hambali N, Razal MR, Khalid A, Hamzah A. 2014. Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. Int Biodeter Biodegrad. 90:115–122. doi:10.1016/j.ibiod.2014.03.006.
  • Taccari M, Milanovic V, Comitini F, Casucci C, Ciani M. 2012. Effects of biostimulation and bioaugmentation on diesel removal and bacterial community. Int Biodeter Biodeg. 66(1):39–46. doi:10.1016/j.ibiod.2011.09.012.
  • Tellechea FRF, Martins MA, da Silva AA, da Gama-Rodrigues EF, Martins MLL. 2016. Use of sugarcane filter cake and nitrogen, phosphorus and potassium fertilization in the process of bioremediation of soil contaminated with diesel. Environ Sci Pollut Res Int. 23(18):18027–18033. doi:10.1007/s11356-016-6965-x.
  • Tyagi M, da Fonseca MMR, de Carvalho C. 2011. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation. 22(2):231–241. doi:10.1007/s10532-010-9394-4.
  • USEPA-3540C. 1996. Soxhlet extraction organics. SW-846 Test methods for evaluating solid waste physical/chemical methods [accessed 2014 Jan 10]. http://www.epa.gov/wastes/hazard/testmethods/sw846/pdfs/3540c.pdf.
  • Walkley A, Black IA. 1934. An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63:251–263.
  • Wu M, Dick WA, Li W, Wang X, Yang Q, Wang T, Xu L, Zhang M, Chen L., 2016. Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeter Biodeg. 107:158–164. doi:10.1016/j.ibiod.2015.11.019.
  • Wu M, Ye X, Chen K, Li W, Yuan J, Jiang X. 2017. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil. Environ Pollut. 223:657–664. doi:10.1016/j.envpol.2017.01.079.
  • Wu ML, Chen LM, Tian YQ, Ding Y, Dick WA. 2013. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media. Environ Pollut. 178:152–158. doi:10.1016/j.envpol.2013.03.004.
  • Yang Z, Xu X, Dai M, Wang L, Shi X, Guo R. 2018. Combination of bioaugmentation and biostimulation for remediation of paddy soil contaminated with 2,4-dichlorophenoxyacetic acid. J Hazard Mater. 353:490–495. doi:10.1016/j.jhazmat.2018.04.052.
  • Yanto DHY, Hidayat A, Tachibana S. 2017. Periodical biostimulation with nutrient addition and bioaugmentation using mixed fungal cultures to maintain enzymatic oxidation during extended bioremediation of oily soil microcosms. Int Biodeter Biodeg. 116:112–123. doi:10.1016/j.ibiod.2016.10.023.
  • Yuan QB, Shen Y, Huang YM, Hu N. 2018. A comparative study of aeration, biostimulation and bioaugmentation in contaminated urban river purification. Environ Technol Inno. 11:276–285. doi:10.1016/j.eti.2018.06.008.
  • Zafra G, Absalón ÁE, Anducho-Reyes MÁ, Fernández FJ, Cortés-Espinosa DV. 2017. Construction of PAH-degrading mixed microbial consortia by induced selection in soil. Chemosphere. 172:120–126. doi:10.1016/j.chemosphere.2016.12.038.
  • Zhang X, Liu Z, Luc NT, Yu Q, Liu X, Liang X. 2016. Impacts of soil petroleum contamination on nutrient release during litter decomposition of Hippophae rhamnoides. Environ Sci Process Impacts. 18(3):398–405. doi:10.1039/c5em00602c.
  • Zhu L, Zhang M. 2008. Effect of rhamnolipids on the uptake of PAHs by ryegrass. Environ Pollut. 156(1):46–52. doi:10.1016/j.envpol.2008.01.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.