187
Views
0
CrossRef citations to date
0
Altmetric
Articles

Nickel hyperaccumulation, elemental profiles and agromining potential of three species of Odontarrhena from the ultramafics of Western Iran

, , &

References

  • Alves S, Trancoso MA, Gonçalves M de LS, Correia dos Santos MM. 2011. A nickel availability study in serpentinised areas of Portugal. Geoderma. 164(3–4):155–163. doi:10.1016/j.geoderma.2011.05.019.
  • Anacker BL. 2011. Phylogenetic patterns of endemism and diversity Chap 3. In: Harrison S and Rajakaruna N, editors. Serpentine: the evolution and ecology of a model system. University of California Press, Berkeley p. 49–70.
  • Álvarez-López V, Prieto-Fernández Á, Cabello-Conejo MI, Kidd PS. 2016. Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants. Sci Tot Environ 548–549:370–379.
  • Angle JS, Baker AJM, Whiting SN, Chaney RL. 2003. Soil moisture effects on uptake of metals by Thlaspi, Alyssum, and Berkheya Plant and soil. 256:325–332.
  • Baker AJM, Brooks RR. 1989. Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery. 1:81–126.
  • Baker AJM, McGrath SP, Reeves RD, Smith JAC. 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G, editors. Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, FL, USA p. 171–188.
  • Bani A, Echevarria G, Sulçe S, Morel JL. 2015a. Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediation. 17(1-6):117–127. doi:10.1080/15226514.2013.862204.
  • Bani A, Echevarria G, Zhang X, Benizri E, Laubie B, Morel JL, Simonnot M-O. 2015b. The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Aust J Bot. 63(2):72–77. doi:10.1071/BT14285.
  • Bettarini I, Colzi I, Gonnelli C, Pazzagli L, Reeves RD, Selvi F. 2020. Inability to accumulate Ni in a genus of hyperaccumulators: the paradox of Odontarrhena sibirica (Brassicaceae). Planta. 252(6):1–12. doi:10.1007/s00425-020-03507-x.
  • Brady KU, Kruckeberg AR, Bradshaw HD. Jr 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst. 36(1):243–266. doi:10.1146/annurev.ecolsys.35.021103.105730.
  • Broadhurst CL, Chaney RL, Angle JS, Maugel TK, Erbe EF, Murphy CA. 2004. Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Environ Sci Technol. 38(21):5797–5802. doi:10.1021/es0493796.
  • Broadhurst CL, Tappero RV, Maugel TK, Erbe EF, Sparks DL, Chaney RL. 2009. Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum. Plant Soil. 314(1–2):35–48. doi:10.1007/s11104-008-9703-4.
  • Brooks RR. 1983. Biological methods of prospecting for minerals. Wiley and Sons, New York.
  • Brooks RR. 1987. Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, Portland
  • Brooks RR, Lee J, Reeves RD, Jaffré T. 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor. 7:49–57. doi:10.1016/0375-6742(77)90074-7.
  • Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akman Y. 1979. Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae). Proc Roy Soc Lond Ser B Bio Sci. 203:387–403.
  • Brooks RR, Radford C. 1978. Nickel accumulation by European species of the genus Alyssum. Proc Roy Soc Lond Ser B Bio Sci. 200:217–224.
  • Cecchi L, Bettarini I, Colzi I, Coppi A, Echevarria G, Pazzagli L, Bani A, Gonnelli C, Selvi F. 2018. The genus Odontarrhena (Brassicaceae) in Albania: taxonomy and nickel accumulation in a critical group of metallophytes from a major serpentine hot-spot. Phytotaxa. 351(1):1–28. doi:10.11646/hytotaxa.351.1.1.
  • Cecchi L, Colzi I, Coppi A, Gonnelli C, Selvi F. 2013. Diversity and biogeography of Ni-hyperaccumulators of Alyssum section Odontarrhena (Brassicaceae) in the central western Mediterranean: evidence from karyology, morphology and DNA sequence data. Bot J Linn Soc. 173(2):269–289. doi:10.1111/boj.12084.
  • Chiarucci A. 2003. Vegetation ecology and conservation on Tuscan ultramafic soils. The Botanical Review. 69(3):252–268. doi:10.1663/0006-8101(2003)069[0252:VEACOT]2.0.CO;2.
  • Deng THB, van der Ent A, Tang Y-T, Sterckeman T, Echevarria G, Morel JL, Qiu R-L. 2018. Nickel hyperaccumulation mechanisms: a review on the current state of knowledge. Plant Soil. 423(1–2):1–11. doi:10.1007/s11104-017-3539-8.
  • Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC. 2001. Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem. 20(10):2383–2396. doi:10.1002/etc.5620201034.
  • Echevarria G, Morel JL. 2015. Technosols of mining areas. Tôpicos em Ciência Do Solo. 9:92–111.
  • Freitas H, Prasad MNV, Pratas J. 2004. Analysis of serpentinophytes from north-east of Portugal for trace metal accumulation-relevance to the management of mine environment. Chemosphere. 54(11):1625–1642. doi:10.1016/j.chemosphere.2003.09.045.
  • Galardi F, Mengoni A, Pucci S, Barletti L, Massi L, Barzanti R, Gabbrielli R, Gonnelli C. 2007. Intra-specific differences in mineral element composition in the Ni-hyperaccumulator Alyssum bertolonii: a survey of populations in nature. Environ Exp Bot. 60(1):50–56. doi:10.1016/j.envexpbot.2006.06.010.
  • Ghaderian SM, Baker AJM. 2007. Geobotanical and biogeochemical reconnaissance of the ultramafics of Central Iran. J Geochem Explor. 92(1):34–42. doi:10.1016/j.gexplo.2006.06.002.
  • Ghaderian SM, Ghasemi R, Hajihashemi F. 2015. Interaction of nickel and manganese in uptake, translocation and accumulation by the nickel hyperaccumulator plant, Alyssum bracteatum (Brassicaceae). Aust J Bot. 63(2):47–55. doi:10.1071/BT14210.
  • Ghaderian SM, Mohtadi A, Rahiminejad MR, Reeves RD, Baker AJM. 2007. Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran. Plant Soil. 293(1–2):91–97. doi:10.1007/s11104-007-9221-9.
  • Ghafoori M, Shariati M, van der Ent A, Baker AJM. 2022. Interpopulation variation in nickel hyperaccumulation and potential for phytomining by Odontarrhena penjwinensis from Western Iran. J Geochem Explor. 237:106985. In Press.
  • Gordon A, Lipman CB. 1926. Why are serpentine and other magnesian soils infertile? Soil Sci. 22:291–302.
  • Gregson S, Hope A. 1994. Review of phytotoxicity, uptake and accumulation of elements and organic chemicals in terrestrial higher plants. AERC Report for Department of the Environment, London
  • Gryschko R, Kuhnle R, Terytze K, Breuer J, Stahr K. 2005. Soil extraction of readily soluble heavy metals and as with 1 M NH4NO3-solution. J Soils Sediments. 5(2):101–106. doi:10.1065/jss2004.10.119.
  • Harrison SP, Rajakaruna N. 2011. Serpentine: the evolution and ecology of a model system. Univ of California Press, Berkeley
  • Hipfinger C, Rosenkranz T, Thüringer J, Puschenreiter M. 2021. Fertilization regimes affecting nickel phytomining efficiency on a serpentine soil in the temperate climate zone. Int J Phytoremediation. 23(4):407–414. doi:10.1080/15226514.2020.1820446.
  • Humphries J, Stangoulis J, Graham R. 2007. Manganese. In: Barker AV, Pilbean DJ, editors. Handbook of Plant Nutrition, Taylor and Francis, USA, p. 351–366.
  • Jaffré T, Brooks RR, Lee J, Reeves RD. 1976. Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science. 193(4253):579–580. doi:10.1126/science.193.4253.579.
  • Jenny H. 1980. The soil resource: origin and behavior. Ecol Stud. 37:256–259. _Springer-Verlag, New York USA, p. 377.
  • Kabata-Pendias A. 2011. Trace elements in soils and plants.4th edn. London, New York: CRC Press.
  • Kazakou E, Adamidis GC, Baker AJM, Reeves RD, Godino M, Dimitrakopoulos PG. 2010. Species adaptation in serpentine soils in Lesbos Island (Greece): metal hyperaccumulation and tolerance. Plant Soil. 332(1–2):369–385. doi:10.1007/s11104-010-0302-9.
  • Kidd PS, Bani A, Benizri E, Gonnelli C, Hazotte C, Kisser J, Konstantinou M, Kuppens T, Kyrkas D, Laubie B, et al. 2018. Developing sustainable agromining systems in agricultural ultramafic soils for nickel recovery. Front Environ Sci. 6:44.
  • Kolář F, Dortová M, Lepš J, Pouzar M, Krejčová A, Štech M. 2014. Serpentine ecotypic differentiation in a polyploid plant complex: shared tolerance to Mg and Ni stress among di-and tetraploid serpentine populations of Knautia arvensis (Dipsacaceae). Plant Soil. 374(1-2):435–447. doi:10.1007/s11104-013-1813-y.
  • Krämer U. 2010. Metal hyperaccumulation in plants. Annu Rev Plant Biol. 61(1):517–534.
  • Kruckeberg AR. 1985. California Serpentines: flora, vegetation, geology, soils, and management problems. Berkeley: University of California Press. p. 180.
  • Kruckeberg AR. 2004. Geology and plant life: the effects of landforms and rock types on plants. Seattle, USA: University of Washington Press.
  • Kukier U, Chaney RL. 2004. In situ remediation of nickel phytotoxicity for different plant species. J Plant Nutr. 27(3):465–495. doi:10.1081/PLN-120028874.
  • Li Y-M, Chaney R, Brewer E, Roseberg R, Angle JS, Baker AJM, Reeves RD, Nelkin J. 2003a. Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil. 249(1):107–115. doi:10.1023/A:1022527330401.
  • Li Y-M, Chaney RL, Brewer EP, Angle JS, Nelkin J. 2003b. Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Technol. 37(7):1463–1468. doi:10.1021/es0208963.
  • Meindl GA, Bain DJ, Ashman TL. 2014. Nickel accumulation in leaves, floral organs and rewards varies by serpentine soil affinity. AoB Plants. 6:plu036. doi:10.1093/aobpla/plu036.
  • Mishra D, Kar M. 1974. Nickel in plant growth and metabolism. Bot Rev. 40(4):395–452. doi:10.1007/BF02860020.
  • Mišljenović T, Jakovljević K, Jovanović S, Mihailović N, Gajić B, Tomović G. 2018. Micro-edaphic factors affect intra-specific variations in trace element profiles of Noccaea praecox on ultramafic soils. Environ Sci Pollut Res Int. 25(31):31737–31751. doi:10.1007/s11356-018-3125-5.
  • Mizuno T, Horie K, Nosaka S, Obata H, Mizuno N. 2009. Serpentine plants in Hokkaido and their chemical characteristics. North East Nat Naturalist. 16(sp5):65–80. doi:10.1656/045.016.0506.
  • Mizuno T, Kirihata Y. 2015. Elemental composition of plants from the serpentine soil of Sugashima Island, Japan. Aust J Bot. 63(4):252–260. doi:10.1071/BT14226.
  • Moghadam HS, Corfu F, Stern RJ, Bakhsh AL. 2019. The Eastern Khoy metamorphic complex of NW Iran: a Jurassic ophiolite or continuation of the Sanandaj–Sirjan Zone? J Geol Soc. 176(3):517–529. doi:10.1144/jgs2018-081.
  • Mohseni R, Ghaderian SM, Ghasemi R, Schat H. 2018. Differential effects of iron starvation and iron excess on nickel uptake kinetics in two Iranian nickel hyperaccumulators, Odontarrhena bracteata and Odontarrhena inflata. Plant Soil. 428(1–2):153–162. doi:10.1007/s11104-018-3666-x.
  • Mohseni R, Ghaderian SM, Schat H. 2019. Nickel uptake mechanisms in two Iranian nickel hyperaccumulators, Odontarrhena bracteata and Odontarrhena inflata. Plant Soil. 434(1–2):263–269. doi:10.1007/s11104-018-3814-3.
  • Moores EM. 2011. Serpentinites and other ultramafic rocks Serpentine: the evolution and ecology of a model system. Berkeley, California: University of California Press. p. 3–70.
  • Naseem S, Bashir E, Shireen K, Shafiq S. 2009. Soil-plant relationship of Pteropyrum olivieri, a serpentine flora of Wadh, Balochistan, Pakistan and its use in mineral prospecting. Studia UBB, Geologia. 54(2):33–39. doi:10.5038/1937-8602.54.2.7.
  • Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel JL, van der Ent A. 2016. Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant Soil. 406(1–2):55–69. doi:10.1007/s11104-016-2859-4.
  • Nkrumah PN, Echevarria G, Erskine PD, van der Ent A. 2022. Farming for battery metals. Sci Total Environ. 827:154092. doi:10.1016/j.scitotenv.2022.154092.
  • O’Dell RE, Claassen VP. 2006. Serpentine and nonserpentine Achillea millefolium accessions differ in serpentine substrate tolerance and response to organic and inorganic amendments. Plant Soil 279:253–269.
  • Osmani M, Bani A, Gjoka F, Pavlova D, Naqellari P, Shahu E, Duka I, Echevarria G. 2019. The natural plant colonization of ultramafic post-mining area of Përrenjas, Albania. Period di Mineral 87 amendments affecting nickel uptake and growth performance of tropical ‘metal crops’ used for agromining. J Geochem Explor. 203:78–86. doi:10.1016/j.gexplo.2019.03.009.
  • Pandolfini T, Pancaro L. 1992. Biogeochemical survey of some ophiolitic outcrops in Tuscany. Flora. 187:341–351. doi:10.1016/S0367-2530(17)32241-7.
  • Pędziwiatr A, Kierczak J, Waroszewski J, Ratié G, Quantin C, Ponzevera E. 2018. Rock-type control of Ni, Cr, and Co phytoavailability in ultramafic soils. Plant Soil. 423(1–2):339–362. doi:10.1007/s11104-017-3523-3.
  • Pollard AJ, McCartha GL, Quintela-Sabarís C, Flynn TA, Sobczyk MK, Smith JAC. 2021. Intraspecific variation in nickel tolerance and hyperaccumulation among serpentine and limestone populations of Odontarrhena serpyllifolia (Brassicaceae: Alysseae) from the Iberian Peninsula. Plants. 10(4):800–827. doi:10.3390/plants10040800.
  • Pollard AJ, Reeves RD, Baker AJM. 2014. Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci. 217-218:8–17. doi:10.1016/j.plantsci.2013.11.011.
  • Proctor J, Woodell SRJ. 1975. The ecology of serpentine soils. Adv Ecol Res. 9:255–366.
  • Reeves RD. 1992. The hyperaccumulation of nickel by serpentine plants. In: Baker AJM, Proctor J, Reeves RD, editors. The vegetation of ultramafic (serpentine) soils. Intercept, Andover. p. 253–277.
  • Reeves RD, Laidlaw WS, Doronila A, Baker AJM, Batianoff GN. 2015. Erratic hyperaccumulation of nickel, with particular reference to the Queensland serpentine endemic Pimelea leptospermoides. Aust J Bot. 63(2):119–127. doi:10.1071/BT14195.
  • Reeves RD, van der Ent A, Echevarria G, Isnard S, Baker AJM. 2021. Global distribution and ecology of hyperaccumulator plants. In: van der Ent A, Baker AJM, Echevarria G, Simonnot M-O, Morel JL, editors. Agromining: farming for metals 2nd edn. Springer Nature. Cham, Switzerland. p. 133–154.
  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V. 1997. The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor. 59(2):75–86. doi:10.1016/S0375-6742(97)00010-1.
  • Rosenkranz T, Hipfinger C, Ridard C, Puschenreiter M. 2019. A nickel phytomining field trial using Odontarrhena chalcidica and Noccaea goesingensis on an Austrian serpentine soil. J Environ Manage. 242:522–528. doi:10.1016/j.jenvman.2019.04.073.
  • Salehi-Eskandari B, Ghaderian SM, Schat H. 2017. The role of nickel (Ni) and drought in serpentine adaptation: contrasting effects of Ni on osmoprotectants and oxidative stress markers in the serpentine endemic, Cleome heratensis, and the related non-serpentinophyte, Cleome foliolosa. Plant Soil. 417(1-2):183–195. doi:10.1007/s11104-017-3250-9.
  • Santisteban JI, Mediavilla R, López-Pamo E, Dabrio CJ, Zapata MBR, García MJG, Castaño S, Martínez-Alfaro PE. 2004. Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? J Paleolimnol. 32(3):287–299. doi:10.1023/B:JOPL.0000042999.30131.5b.
  • Shallari S, Schwartz C, Hasko A, Morel JL. 1998. Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ. 209(2–3):133–142.
  • Shi G, Cai Q. 2009. Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv. 27(5):555–561. doi:10.1016/j.biotechadv.2009.04.006.
  • Sobczyk MK, Smith JAC, Pollard AJ, Filatov DA. 2017. Evolution of nickel hyperaccumulation and serpentine adaptation in the Alyssum serpyllifolium species complex. Heredity (Edinb). 118(1):31–41. doi:10.1038/hdy.2016.93.
  • Španiel S, Kempa M, Salmerón-Sánchez E, Fuertes-Aguilar J, Mota JF, Al-Shehbaz IA, German DA, Olšavská K, Šingliarová B, Zozomová-Lihová J, et al. 2015. AlyBase: database of names, chromosome numbers, and ploidy levels of Alysseae (Brassicaceae), with a new generic concept of the tribe. Plant Syst Evol. 301(10):2463–2491. doi:10.1007/s00606-015-1257-3.
  • Stamenković U, Andrejić G, Mihailović N, Šinžar-Sekulić J. 2017. Hyperaccumulation of Ni by Alyssum murale Waldst. & Kit. from ultramafics in Bosnia and Herzegovina. Appl Ecol and Environ Res. 15:359–372.
  • Susaya JP, Kim K-H, Asio VB, Chen Z-S, Navarrete I. 2010. Quantifying nickel in soils and plants in an ultramafic area in Philippines. Environ Monit Assess. 167(1–4):505–514. doi:10.1007/s10661-009-1067-6.
  • Tomović GM, Mihailović NL, Tumi AF, Gajić BA, Mišljenović TD, Niketić MS. 2013. Trace metals in soils and several Brassicaceae plant species from serpentine sites of Serbia. Arch Environ Prot. 39(4):29–49. doi:10.2478/aep-2013-0039.
  • Tumi AF, Mihailović NL, Gajić BA, Niketić MS, Tomović GM. 2012. Comparative study of hyperaccumulation of nickel by Alyssum murale s.l. Populations from the ultramafics of Serbia. Pol J Environ Stud. 21:1855–1866.
  • van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, et al. 2015. Agromining: farming for metals in the future? Environ Sci Technol. 49(8):4773–4780. doi:10.1021/es506031u.
  • van der Ent A, Cardace D, Tibbett M, Echevarria G. 2018. Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). Catena. 160:154–169. doi:10.1016/j.catena.2017.08.015.
  • van der Ent A, Echevarria G, Tibbett M. 2016. Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology. 26(2):67–82. doi:10.1007/s00049-016-0209-x.
  • van der Pas L, Ingle RA. 2019. Towards an understanding of the molecular basis of nickel hyperaccumulation in plants. Plants. 8(1):11. doi:10.3390/plants8010011.
  • Verbruggen N, Hermans C, Schat H. 2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 181(4):759–776. doi:10.1111/j.1469-8137.2008.02748.x.
  • Whiting SN, Reeves RD, Baker AJM. 2002. Mining, metallophytes and land reclamation. Min Environ Manage. 11:12–16.
  • Whittaker R. 1954. The ecology of serpentine soils. Ecology. 35(2):258–288. doi:10.2307/1931126.
  • Wilding L. 1985. Spatial variability: its documentation, accommodation and implication to soil surveys. In: Nielsen DR, Bemna J. editors. Soil Spatial Variability. Proccedings of the ISSS and the SSSA, Las Vegas NV, 30 November-1 December 1984. p. 166–194.
  • Xhaferri B, Bani A, Pavlova D, Salihaj M. 2018. Relationship between nickel in the soil and its accumulation by Alyssum murale Waldst. & Kit. During the flowering period at the serpentine site of Pojskë. Albania. Albanian J Agric Sci. 17:384–388.
  • Zhang X, Houzelot V, Bani A, Morel JL, Echevarria G, Simonnot M-O. 2014. Selection and combustion of Ni-hyperaccumulators for the phytomining process. Int J Phytoremediation. 16(7–12):1058–1072. doi:10.1080/15226514.2013.810585.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.