334
Views
0
CrossRef citations to date
0
Altmetric
Review

Chelate assisted phytoextraction for effective rehabilitation of heavy metal(loid)s contaminated lands

, , , , , & show all

References

  • Acharya S. 2013. Lead between the lines. Nat Chem. 5(10):894. doi:10.1038/nchem.1761.
  • Acuña E, Castillo M, Casanova QM, Tapia Y. 2020. Assisted phytoremediation of lead contaminated soil using Atriplex halimus and its effect on some soil physical properties. Int J Environ Sci Technol. 18(7):1925-1938. doi:10.1007/s13762-020-02978-5.
  • Afshan S, Ali S, Bharwana SA, Rizwan M, Farid M, Abbas F, Ibrahim M, Mehmood MA, Abbasi GH. 2015. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ Sci Pollut Res. 22(15):11679–11689. doi:10.1007/s11356-015-4396-8.
  • Alkorta I, Hernandez-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C. 2004. Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenic. Rev Environ Sci Biotechnol. 3(1):71–90. doi:10.1023/B:RESB.0000040059.70899.3d.
  • Almaroai YA, Usman AR, Ahmad M, Kim KR, Moon DH, Lee SS, Ok YS. 2012. Effects of synthetic chelators and low-molecular-weight organic acids on chromium, copper, and arsenic uptake and translocation in maize (Zea mays L.). Soil Sci. 177(11):655–663. doi:10.1097/SS.0b013e31827ba23f.
  • Amir W, Farid M, Ishaq HK, Farid S, Zubair M, Alharby HF, Bamagoos AA, Rizwan M, Raza N, Hakeem KR, et al. 2020. Accumulation potential and tolerance response of Typha latifolia L. under citric acid assisted phytoextraction of lead and mercury. Chemosphere. 257:127247. doi:10.1016/j.chemosphere.2020.127247.
  • Andrade AFM, Sobrinho NMBA, Santos FS, Magalhães MOL, Tolón-Becerra A, Lima LS. 2014. EDTA-induced phytoextraction of lead and barium by Brachiaria (B. decumbens cv. Basilisk) in soil contaminated by oil exploration drilling waste. Acta Sci Agron. 36(4):495–500. doi:10.402.5/actasciagron.v6i4.18172.
  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan N, Iqbal M, et al. 2012. Modulation of glutathione and its related enzymes in plant’s responses to toxic metals and metalloids – a review. Environ Exp Bot. 75:307–324. doi:10.1016/j.envexpbot.2011.07.002.
  • Aponte H, Meli P, Butler B, Paolini J, Matus F, Merino C, Cornejo P, Kuzyakov Y. 2020. Meta-analysis of heavy metal effects on soil enzyme activities. Sci Total Environ. 737:139744. doi:10.1016/j.scitotenv.2020.139744.
  • Arsenov D, Zupunski M, Borisev M, Nikolic N, Orlovic S, Pilipovic A, Pajevic S. 2017. Exogenously applied citric acid enhances antioxidant defense and phytoextraction of cadmium by willows (Salix spp.). Water Air Soil Pollut. 228(6):221. doi:10.1007/s11270-017-3405-6.
  • Asaolu SS, Awokunmi EE, Ajayi OO, Adebayo OA. 2013. Phytoremediation potential of Alocasia microrrhiza grown on soil collected from selected dumpsites in Ekiti State, Nigeria. E3S Web Conf. 1:13003. doi:10.1051/e3sconf/20130113003.
  • Asemave K. 2018. Greener chelators for recovery of metals and other applications. Org Med Chem Int J. 6:1–11. doi:10.19080/OMCIJ.2018.06.555694.
  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN. 2019. Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf. 174:714–727. doi:10.1016/j.ecoenv.2019.02.068.
  • ATSDR. 2005. Toxicological profile for nickel. Atlanta (GA): US Public Health Service, Agency for Toxic Substances and Disease Registry.
  • Awokunmi EE. 2015. Comparative chelate-assisted phytoextraction of heavy metals by Jatropha curcas, Jatropha gossypifolia and Jatropha multifida cultivated on soil collected from selected dumpsites in Ekiti state, Nigeria. BJAST. 5(4):353–370. doi:10.9734/BJAST/2015/9363.
  • Aziz HA, Adlan MN, Ariffin KS. 2008. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr (III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresour Technol. 99(6):1578–1583. doi:10.1016/j.biortech.2007.04.007.
  • Barcelo J, Poschenrieder C. 1990. Plant water relations as affected by heavy metal stress: a review. J Plant Nutr. 13(1):1–37. doi:10.1080/01904169009364057.
  • Bera A, Verma S, Suneetha V. 2013. Estimation and economic analysis of citric acid extracted from vegetative wastes collected from Vellore. Der Pharm Lett. 5:58–64.
  • Bjorklund G, Semenova Y, Pivina L, Dadar M, Rahman MM, Aaseth J, Chirumbolo S. 2020. Uranium in drinking water: a public health threat. Arch Toxicol. 94(5):1551–1560. doi:10.1007/s00204-020-02676-8.
  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol. 31(3):860–865. doi:10.1021/es960552a.
  • Blum WE. 2013. Soil and land resources for agricultural production: General trends and future scenarios-a worldwide perspective. Int Soil Water Conserv Res. 1(3):1–14. doi:10.1016/S2095-6339(15)30026-5.
  • Boopathy R. 2000. Factors limiting bioremediation technologies. Bioresour Technol. 74(1):63–67. doi:10.1016/S0960-8524(99)00144-3.
  • Braud AM, Gaudin P, Hazotte A, Le Guern C, Lebeau T. 2019. Chelate-assisted phytoextraction of lead using Fagopyrum esculentum: laboratory vs. field experiments. Int J Phytoremediation. 21(11):1072–1079. doi:10.1080/15226514.2019.1606778.
  • Bucheli-Witschel M, Egli T. 2001. Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol Rev. 25(1):69–106. doi:10.1111/j.1574-6976.2001.tb00572.x.
  • Chandra R, Kumar V. 2018. Phytoremediation: a green sustainable technology for industrial waste management. In: Chandra R, Dubey NK, Kumar V, editors. Phytoremediation of environmental pollutants. Boca Raton (FL): CRC Press. p. 2–36.
  • Chaney RL. 1983. Plant uptake of inorganic waste. In: Parr JE, Marsh PB, Kla JM, editors. Land treatment of hazardous waste. Park Ridge: Noyes Data Corp. p. 50–76.
  • Chemistry of Copper. 2020. [Accessed 2021 May 3]. https://chem.libretexts.org/@go/page/3722.
  • Chen L, Wang D, Long C, Cui Z. 2019. Effect of biodegradable chelators on induced phytoextraction of uranium- and cadmium contaminated soil by Zebrina pendula Schnizl. Sci Rep. 9(1):19817. doi:10.1038/s41598-019-56262-9.
  • Chen L, Yang J, Wang D. 2020. Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L.) enhanced with biodegradable chelating agents. J Clean Prod. 263:121491. doi:10.1016/j.jclepro.2020.121491.
  • Chigbo C, Batty L. 2015. Chelate-assisted phytoremediation of Cu-pyrene-contaminated soil using Z. mays. Water Air Soil Pollut. 226(3):74. doi:10.1007/s11270-014-2277-2.
  • Clarkson TW, Magos L. 2006. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 36(8):609–662. doi:10.1080/10408440600845619.
  • Del-Dacera DM, Babel S. 2006. Use of citric acid for heavy metals extraction from contaminated sewage sludge for land application. Water Sci Technol. 54(9):129–135. doi:10.2166/wst.2006.764.
  • Dubey RS. 2011. Metal toxicity, oxidative stress and antioxidative defence system in plants. In: Gupta SD, editor. Reactive oxygen species and antioxidants in higher plants. Boca Raton (FL): CRC Press. p. 177–203.
  • Ebrahimi M. 2014. Effect of EDTA and DTPA on phytoremediation of Pb-Zn contaminated soils by Eucalyptus camaldulensis Dehnh and effect on treatment. Time Desert. 19:65–73. doi:10.22059/JDESERT.2014.51055.
  • Ebrahimi M. 2015. Effect of EDTA treatment method on leaching of Pb and Cr by Phragmites australis (Cav.) Trin. Ex Steudel (common reed). Casp J Environ Sci. 13:153–166.
  • Ebrahimi M, Madrid-Díaz F. 2014. Use of Festuca ovina L. in chelate assisted phytoextraction of Copper contaminated soils. J Rangel Sci. 4:171–182.
  • Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M. 2014. Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Saf. 106:164–172. doi:10.1016/j.ecoenv.2014.03.007.
  • Evangelou MWH, Ebel M, Schaeffer A. 2007. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere. 68(6):989–1003. doi:10.1016/j.chemosphere.2007.01.062.
  • Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SAH, Saeed R, Wu L. 2017. Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol Environ Saf. 145:90–102. doi:10.1016/j.ecoenv.2017.07.016.
  • Fitz WJ, Wenzel WW, Zhang H, Nurmi J, Stipek K, Fischerova Z, Schweiger P, Kollensperger G, Ma LQ, Stingeder G. 2003. Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environ Sci Technol. 37(21):5008–5014. doi:10.1021/es0300214.
  • Freitas E, Nascimento C, Silva W. 2014. Citric acid-assisted phytoextraction of lead in the field: the use of soil amendments. Water Air Soil Pollut. 225(1):9. doi:10.1016/j.chemosphere.2013.01.103.
  • Garbisu C, Alkorta I. 2001. Phytoextraction: A cost effective plant based technology for the removal of metals from the environment. Bioresour Technol. 77(3):229–236. doi:10.1016/S0960-8524(00)00108-5.
  • Garg N, Singla P. 2011. Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett. 9(3):303–321. doi:10.1007/s10311-011-0313-7.
  • Gaur N, Narasimhulu K, PydiSetty Y. 2018. Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J Clean Prod. 198:1602–1631. doi:10.1016/j.jclepro.2018.07.076.
  • Gavrilescu M. 2005. Fate of pesticides in the environment and its bioremediation. Eng Life Sci. 5(6):497–526. doi:10.1002/elsc.200520098.
  • Gavrilescu M, Pavel LV, Cretescu I. 2009. Characterization and remediation of soils contaminated with uranium. J Hazard Mater. 163(2–3):475–510. doi:10.1016/j.jhazmat.2008.07.103.
  • Ghasemi F, Ebrahimi M, Shirazi PM. 2017. Lead phytoremediation capacity of Puccinellia distans (Jacq.) Parl. using EDTA and DTPA and associated potential leaching risk. Glob Nest J. 19:359–366. doi:10.30955/gnj.002167.
  • González I, Neaman A, Cortés A, Rubio P. 2014. Effect of compost and biodegradable chelate addition on phytoextraction of copper by Oenothera picensis grown in Cu-contaminated acid soils. Chemosphere. 95:111–115. doi:10.1016/j.chemosphere.2013.08.046.
  • Grifoni M, Pedron F, Petruzzelli G, Rosellini I, Barbafieri M, Franchi E, Bagatin R. 2017. Assessment of repeated harvests on mercury and arsenic phytoextraction in a multi-contaminated industrial soil. AIMS Environ Sci. 4(2):187–205. doi:10.3934/environsci.2017.2.187.
  • Grifoni M, Schiavon M, Pezzarossa B, Petruzzelli G, Malagoli M. 2015. Effects of phosphate and thiosulphate on arsenic accumulation in the species Brassica juncea. Environ Sci Pollut Res Int. 22(4):2423–2433. doi:10.1007/s11356-014-2811-1
  • Gul I, Manzoor M, Hashim N, Shah GM, Waani SPT, Shahid M, Antoniadis V, Rinklebe J, Arshad M. 2021. Challenges in microbially and chelate-assisted phytoextraction of cadmium and lead – a review. Environ Pollut. 287:117667. doi:10.1016/j.envpol.2021.117667.
  • Guo D, Ali A, Ren C, Du J, Li R, Lahori AH, Xiao R, Zhang Z, Zhang Z. 2019. EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators. Ecotoxicol Environ Saf. 167:396–403. doi:10.1016/j.ecoenv.2018.10.038.
  • Han F, Shan X-Q, Zhang J, Xie Y-N, Pei Z-G, Zhang S-Z, Zhu Y-G, Wen B. 2005. Organic acids promote the uptake of lanthanum by barley roots. New Phytol. 165(2):481–492. doi:10.1111/j.1469-8137.2004.01256.x.
  • Mahmood-Ul-Hassan M, Suthar V, Ahmad R, Yousra M. 2017. Heavy metal phytoextraction-natural and EDTA assisted remediation of contaminated calcareous soils by sorghum and oat. Environ Monit Assess. 189(11):591. doi:10.1007/s10661-017-6302-y.
  • Hassan SH, Awad YM, Kabir MH, Oh SE, Joo JH. 2010. Biotechnology cracking new pastures. In: Bacterial biosorption of heavy metals. New Delhi: MD Publications Pvt. Ltd. p. 79–110.
  • Haygarth P, Ritz K. 2009. The future of soils and land use in the U.K: soil systems for the provision of land-based ecosystem services. Land Use Policy. 26:S187–S197. doi:10.1016/j.landusepol.2009.09.016.
  • Herawati N, Suzuki S, Hayashi K, Rivai IF, Koyama H. 2000. Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia and China by soil type. Bull Environ Contam Toxicol. 64(1):33–39. doi:10.1007/s001289910006.
  • Hofrichter M, Steinbüchel A. 2001. Biopolymers. In: Lignin, humic substances and coal. New York (NY): Wiley.
  • Holleman AF, Wiberg E. 2001. Inorganic chemistry. San Diego (CA): Academic Press.
  • Hossain MA, Hasanuzzaman M, Fujita M. 2010. Up-regulation of antioxidant and glyoxalase systems by exogenous glycine betaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants. 16(3):259–272. doi:10.1007/s12298-010-0028-4.
  • Hsiao KH, Kao PH, Hseu ZY. 2007. Effects of chelators on chromium and nickel uptake by Brassica juncea on serpentine-mine tailings for phytoextraction. J Hazard Mater. 148(1–2):366–376. doi:10.1016/j.jhazmat.2007.02.049.
  • Hu N, Lang T, Ding D, Hu J, Li C, Zhang H, Li G. 2019. Enhancement of repeated applications of chelates on phytoremediation of uranium contaminated soil by Macleaya cordata. J Environ Radioact. 199–200:58–65. doi:10.1016/j.jenvrad.2018.12.023.
  • Huang L, Zhou QX, Zhang QR. 2008. Removal effects of citric acid, oxalic acid and acetic acid on Cd, Pb, Cu and Zn in sewage sludge. Ying Yong Sheng Tai Xue Bao. 19:641–646.
  • Hyvönen H. 2008. Studies on metal complex formation of environmentally friendly aminopolycarboxylate chelating agents [Doctoral thesis]. Helsinki: University of Helsinki.
  • Israila YZ, Bola AE, Emmanuel GC, Ola IS. 2015. The effect of application of EDTA on the phytoextraction of heavy metals by Vetivera zizanioides, Cymbopogon citrates and Helianthus annuus. Int J Environ Monit Anal. 3:38–43. doi:10.11648/j.ijema.20150302.12.
  • Jachuła J, Kołodyńska D, Hubicki Z. 2012. Methylglycinediacetic acid as a new complexing agent for removal of heavy metal ions from industrial wastewater. Solvent Extr Ion Exch. 30(2):181–196. doi:10.1080/07366299.2011.581088.
  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 7(2):60–72. doi:10.2478/intox-2014-0009.
  • Janeeshma E, Kalaji HM, Puthur JT. 2021. Differential responses in the photosynthetic efficiency of Oryza sativa and Zea mays on exposure to Cd and Zn toxicity. Acta Physiol Plant. 43(1):1–16. doi:10.1007/s11738-020-03178-x.
  • Jarup L. 2003. Hazards of heavy metal contamination. Br Med Bull. 68:167–182. doi:10.1093/bmb/ldg032.
  • Joshi N, Paliwal A, Pant V. 2016. Toxicity of heavy metals and its management through phytoremediation. Oct J Environ Res. 4:168–180.
  • Kabata-Pendias A. 2011. Trace elements in soil and plants. New York (NY): CRC Press.
  • Kaushik P. 2015. Use of natural organic and synthetic chelating agents for efficient phytoremediation. Int J Enhanc Res Sci Technol Eng. 4:99–101.
  • Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin R. 2000. Enhancement of phytoextraction of Zn, Cd and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol. 34(9):1778–1783. doi:10.1021/es990697s.
  • Khadir K. 2011. Production of citric acid from citrus fruit wastes by local isolate and MTCC 281 Aspergillus niger Strains. Int J Eng Sci Technol. 3:4849–4856.
  • Khair K, Farid M, Ashraf U, Zubair M, Rizwan M, Farid S, Ishaq HK, Iftikhar U, Ali S. 2020. Citric acid enhanced phytoextraction of nickel (Ni) and alleviate Mentha piperita (L.) from Ni-induced physiological and biochemical damages. Environ Sci Pollut Res Int. 27(21):27010–27022. doi:10.1007/s11356-020-08978-9.
  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C. 2017. A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor. 182:247–268. doi:10.1016/j.gexplo.2016.11.021.
  • Kołodyńska D. 2011. Chelating agents of a new generation as an alternative to conventional chelators for heavy metal ions removal from different waste waters. In: Expanding issues in desalination. p. 339–370. USA: InTech Publishers. doi:10.5772/21180.
  • Komárek M, Vanek A, Mrnka L, Sudová R, Száková J, Tejnecký V, Chrastný V. 2010. Potential and drawbacks of EDDS-enhanced phytoextraction of copper from contaminated soils. Environ Pollut. 158(7):2428–2438. doi:10.1016/j.envpol.2010.04.002.
  • Kos B, Lestan D. 2004. Chelator induced phytoextraction and in situ soil washing of Cu. Environ Pollut. 132(2):333–339. doi:10.1016/j.envpol.2004.04.004.
  • Lagier T, Feuillade G, Matejka G. 2000. Interactions between copper and organic macromolecules: determination of conditional complexation constants. Agronomie. 20(5):537–546. doi:10.1051/agro:2000148f.
  • Lenka M, Panda KK, Panda BB. 1992. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant—bioconcentration of mercury in in situ aquatic and terrestrial plants at Ganjam, India. Arch Environ Contam Toxicol. 22(2):195–202. doi:10.1007/BF00213285.
  • Lestan D, Luo C, Li X. 2008. The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut. 153(1):3–13. doi:10.1016/j.envpol.2007.11.015.
  • Liang Y, Wang X, Guo Z, Xiao X, Peng C, Yang J, Zhou C, Zeng P. 2019. Chelator-assisted phytoextraction of arsenic, cadmium and lead by Pteris vittata L. and soil microbial community structure response. Int J Phytoremediation. 21(10):1032–1040. doi:10.1080/15226514.2019.1594685.
  • Liu X, Feng HY, Fu JW, Sun D, Cao Y, Chen Y, Xiang P, Liu Y, Ma LQ. 2018. Phytate promoted arsenic uptake and growth in arsenic-hyperaccumulator Pteris vittata by upregulating phosphorus transporters. Environ Pollut. 241:240–246. doi:10.1016/j.envpol.2018.05.054.
  • Liu X, Fu JW, Tang N, da Silva EB, Cao Y, Turner BL, Chen Y, Ma LQ. 2017. Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata. Environ Pollut. 226:212–218. doi:10.1016/j.envpol.2017.04.021.
  • Liu Z, Wang L, Ding S, Xiao H. 2018. Enhancer assisted-phytoremediation of mercury-contaminated soils by Oxalis corniculata L., and rhizosphere microorganism distribution of Oxalis corniculata L. Ecotoxicol Environ Saf. 160:171–177. doi:10.1016/J.ECOENV.2018.05.041.
  • Liu ZC, Wang LA, Xu T, Deng X, Zhang H. 2014. Research on the effect of Na2S2O3 on mercury transfer ability of two plant species. Ecol. Eng. 73:649–652. doi:10.1016/j.ecoleng.2014.09.037.
  • Lomonte C, Doronila A, Gregory D, Baker AJM, Kolev SD. 2011. Chelate-assisted phytoextraction of mercury in biosolids. Sci Total Environ. 409(13):2685–2692. doi:10.1016/j.scitotenv.2011.03.037.
  • Luo CL, Shen ZG, Li XD. 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere. 59(1):1–11. doi:10.1016/j.chemosphere.2004.09.100.
  • Luo J, Cai L, Qi S, Wu J, Gu XS. 2018. Influence of direct and alternating current electric fields on efficiency promotion and leaching risk alleviation of chelator assisted phytoremediation. Ecotoxicol Environ Saf. 149:241–247. doi:10.1016/j.ecoenv.2017.12.005.
  • Luo J, Cai L, Qi S, Wu J, Gu XWS. 2017. Improvement effects of cytokinin on EDTA assisted phytoremediation and the associated environmental risks. Chemosphere. 185:386–393. doi:10.1016/j.chemosphere.2017.07.
  • MacCarthy P. 2001. The principles of humic substances. Soil Sci. 166:738–751.
  • Makarova AS, Nikulina EA, Tsirulnikova NV, Avdeenkova TS, Pishaeva KV, Glinushkin AP, Podkovyrov IY. 2021. Screening of various chemical additives, including S-containing complexion to enhance phytoextraction of mercury by white creeping clover (Trifolium repens L.). IOP Conf Ser Earth Environ Sci. 663(1):012041. doi:10.1088/1755-1315/663/1/012041.
  • Mallhi ZI, Rizwan M, Mansha A, Ali Q, Asim S, Ali S, Hussain A, Alrokayan SH, Khan HA, Alam P, et al. 2019. Citric acid enhances plant growth, photosynthesis, and phytoextraction of lead by alleviating the oxidative stress in Castor beans. Plants. 8(11):525. doi:10.3390/plants8110525.
  • Mantry P, Patra HK. 2015. Chelate-assisted phytoextraction of chromium in drought resistant and drought susceptible variety of rice. Int Res J Biol Sci. 4(7):8–14.
  • Matczak-Jon E, Videnova-Adrabińska V. 2005. Supramolecular chemistry and complexation abilities of diphosphonic acids. Coord Chem Rev. 249(21–22):2458–2488. doi:10.1016/j.ccr.2005.06.001.
  • Matveev SV, Bel’skii FI, Matveeva AG, Gukasova Y, Polikarpov YM, Kabachnik MI. 1998. N-Substituted 2-aminoethylidenediphosphonic acids as complexones. Russ Chem Bull. 47(9):1736–1740. doi:10.1007/BF02495696.
  • Mirsal IA. 2008. Planning and realisation of soil remediation. In: Soil pollution. Berlin; Heidelberg: Springer. p. 265–281.
  • Mohsin M, Kuittinen S, Salam MMA, Peräniemi S, Laine S, Pulkkinen P, Kaipiainen E, Vepsäläinen J, Pappinen A. 2019. Chelate-assisted phytoextraction: Growth and ecophysiological responses by Salix schwerinii E.L Wolf grown in artificially polluted soil. J Geochem Explor. 205:106335. doi:10.1016/j.gexplo.2019.106335.
  • Moore Shorb J, Prat-Resina X, Tim Wendorff EV, John W, Hahn A. 2020. Chelating agents [accessed 2021 Jul 10]. https://chem.libretexts.org/@go/page/49654.
  • Nair SG, Puthur JT. 2020. Physio-chemical changes in Acanthus ilicifolius L. associated with arsenic stress. Plant Funct Biol. 117-124.
  • Najeeb U, Xu L, Ali S, Jilani G, Gong HJ, Shen WQ, Zhou WJ. 2009. Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L. J Hazard Mater. 170(2–3):1156–1163. doi:10.1016/j.jhazmat.2009.05.084.
  • Navarro-León E, López-Moreno FJ, Rios JJ, Blasco B, Ruiz JM. 2020. Assaying the use of sodium thiosulphate as a biostimulant and its effect on cadmium accumulation and tolerance in Brassica oleracea plants. Ecotoxicol Environ Saf. 200:110760. doi:10.1016/j.ecoenv.2020.110760.
  • Newman LA, Reynolds CM. 2004. Phytodegradation of organic compounds. Curr Opin Biotechnol. 15(3):225–230. doi:10.1016/j.copbio.2004.04.006.
  • Niinae M, Nishigaki K, Aoki K. 2008. Removal of lead from contaminated soils with chelating agents. Mater Trans. 49(10):2377–2382. doi:10.2320/matertrans.MMRA2008825.
  • Oh K, Cao TH, Cheng HY, Liang XH, Hu XF, Yan LJ, Yonemochi S, Takahi S. 2015. Phytoremediation potential of sorghum as a biofuel crop and the enhancement effects with microbe inoculation in heavy metal contaminated soil. JBM. 3(6):9–14. doi:10.4236/jbm.2015.36002.
  • Okano S, Ishida K, Kuse S. 2003. Bleach-fixer using a new biodegradable chelating agent. Konica Tech Rep. 16:13–18.
  • Oves M, Khan MS, Zaidi A, Ahmad E. 2012. Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview. In: Toxicity of heavy metals to legumes and bioremediation. p. 1–27. Vienna: Springer.
  • Paiva LB, de Oliveira JG, Azevedo RA, Ribeiro DR, da Silva MG, Vitoria AP. 2009. Responses of water hyacinth exposed to Cr3+ and Cr6. Environ Exp Bot. 65(2–3):403–409. doi:10.1016/j.envexpbot.2008.11.012.
  • Panda SK, Choudhury S. 2005. Changes in nitrate reductase activity and oxidative stress response in the moss Polytrichum commune subjected to chromium, copper and zinc phytotoxicity. Braz J Plant Physiol. 17(2):191–197. doi:10.1590/S1677-04202005000200001.
  • Pandey SK, Bhattacharya T. 2018. Effect of two biodegradable chelates on metals uptake, translocation and biochemical changes of Lantana camara growing in fly ash amended soil. Int J Phytoremediation. 20(3):214–224. doi:10.1080/15226514.2017.1365350.
  • Patra DK, Pradhan C, Patra HK. 2018. Chelate based phytoremediation study for attenuation of chromium toxicity stress using lemongrass: Cymbopogon flexuosus (nees ex steud.) W. Watson. Int J Phytoremediation. 20(13):1324–1329. doi:10.1080/15226514.2018.1488812.
  • Patra M, Sharma A. 2000. Mercury toxicity in plants. Bot Rev. 66(3):379–422. doi:10.1007/BF02868923.
  • Pinto IS, Neto IF, Soares HM. 2014. Biodegradable chelating agents for industrial, domestic, and agricultural applications–a review. Environ Sci Pollut Res Int. 21(20):11893–11906. doi:10.1007/s11356-014-2592-6.
  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. 2011. Lead uptake, toxicity, and detoxifcation in plants. Rev Environ Contam Toxicol. 213:113–136. doi:10.1007/978-1-4419-9860-6_4.
  • Proshad R, Kormoker T, Mursheed N, Islam MM, Bhuyan MI, Islam MS, Mithu TN. 2018. Heavy metal toxicity in agricultural soil due to rapid industrialization in Bangladesh: a review. IJAG. 6(1):83–88. doi:10.14419/ijag.v6i1.9174.
  • Purbalisa W, Paputri DMW, Wahyuni S, Ardiwinata AN. 2019. Evaluation of chelating agents for remediation of lead contaminated soil in Brebes Central Java. AIP Conference Proceedings 2120. p. 040015. doi:10.1063/1.5115653.
  • Qin F, Shan XQ, Wei B. 2004. Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere. 57(4):253–263. doi:10.1016/j.chemosphere.2004.06.010.
  • Rahman MA, Rahman MM, Kadohashi K, Maki T, Hasegawa H. 2011. Effect of external iron and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake in rice (Oryza sativa L.). Chemosphere. 84(4):439–445. doi:10.1016/j.chemosphere.2011.03.046.
  • Ricci M, Tilbury L, Daridon B, Sukalac K. 2019. General principles to justify plant biostimulant claims. Front Plant Sci. 10:494. doi:10.3389/fpls.2019.00494.
  • Russell RG. 2007. Bisphosphonates: mode of action and pharmacology. Pediatrics. 119(Supplement_2):S150–S162. doi:10.1542/peds.2006-2023H.
  • Saleem MH, Ali S, Rehman M, Rizwan M, Kamran M, Mohamed IA, khan Z, Bamagoos AA, Alharby HF, Hakeem KR, et al. 2020. Individual and combined application of EDTA and citric acid assisted phytoextraction of copper using jute (Corchorus capsularis L.) seedlings. Lijun Liu Environ Technol Innov. 19:100895. doi:10.1016/j.eti.2020.100895.
  • Santos FS, Hernández-Allica J, Becerril MJ, Sobrinho AN, Mazur N, Garbisu C. 2006. Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere. 65(1):43–50. doi:10.1016/j.chemosphere.2006.03.012.
  • Sarath NG, Manzil SA, Ali S, Alsahli AA, Puthur JT. 2022. Physio-anatomical modifications and elemental allocation pattern in Acanthus ilicifolius L. subjected to zinc stress. PLOS One. 17(5):e0263753. doi:10.1371/journal.pone.0263753.
  • Sarath NG, Puthur JT. 2021. Heavy metal pollution assessment in a mangrove ecosystem scheduled as a community reserve. Wetlands Ecol Manage. 29(5):719–730. doi:10.1007/s11273-020-09764-7.
  • Sarath NG, Shackira AM, El-Serehy HA, Hefft DI, Puthur JT. 2022. Phytostabilization of arsenic and associated physio-anatomical changes in Acanthus ilicifolius L. Environ Pollut. 298(1):118828. doi:10.1016/j.envpol.2022.118828.
  • Sarath NG, Sruthi P, Shackira AM, Puthur JT. 2020. Heavy metal remediation in wetlands: mangroves as potential candidates. In: Grigore MN, editor. Handbook of halophytes: from molecules to ecosystems towards biosaline agriculture. USA: Springer International Publishing. p. 1–27.
  • Sarath NG, Sruthi P, Shackira AM, Puthur JT. 2021. Halophytes as effective tool for phytodesalination and land reclamation. In: Frontiers in plant-soil interaction. United Kingdom: Academic Press. p. 459–493.
  • Sarwar N, Imran M, Shaheen M, Ishaque W, Kamran M, Matloob A, Rehim A, Hussain S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere. 171:710–721. doi:10.1016/j.chemosphere.2016.12.116.
  • Schmidt CK, Brauch HJ. 2004. Impact of aminopolycarboxylates on aquatic organisms and eutrophication: overview of available data. Environ Toxicol. 19(6):620–637. doi:10.1002/tox.20071.
  • Şenel S, Elmas B, Çamlı T, Andaç M, Denizli A. 2004. Poly(hydroxyethylmethacrylate-N-methacryloyl-(L)-histidinemethyl‐ester) based metal‐chelate affinity adsorbent for separation of lysozyme. Sep Sci Technol. 39(16):3783–3795. doi:10.1081/SS-200041105.
  • Shakoor MB, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T, Najeeb U, Bharwana SA, Abbasi GH. 2014. Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf. 109:38–47. doi:10.1016/j.ecoenv.2014.07.033.
  • Shanker AK, Djanaguiraman M, Sudhagar R, Chandrashekar CN, Pathmanabhan G. 2004. Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L) R Wilczek, cv CO4) roots. Plant Sci. 166(4):1035–1043. doi:10.1016/j.plantsci.2003.12.015.
  • Sharma P, Dubey RS. 2007. Involvement of oxidative stress and role of antioxidative defence system in growing rice seedlings exposed to toxic levels of aluminium. Plant Cell Rep. 26(11):2027–2038. doi:10.1007/s00299-007-0416-6.
  • Sheetal KR, Singh SD, Anand A, Prasad S. 2016. Heavy metal accumulation and effects on growth, biomass and physiological processes in mustard. Ind J Plant Physiol. 21(2):219–223. doi:10.1007/s40502-016-0221-8.
  • Shen ZG, Li XD, Wang CC, Chen HM, Chua H. 2002. Lead phytoextraction from contaminated soils with high biomass plant species. J Environ Qual. 31(6):1893–1900. doi:10.2134/jeq2002.1893.
  • Shier WT. 1994. Metals as toxins in plants. J Toxicol Toxin Rev. 13(2):205–216. doi:10.3109/15569549409089960.
  • Shrivastava R, Upreti RK, Seth PK, Chaturvedi UC. 2002. Effects of chromium on the immune system. FEMS Immunol Med Microbiol. 34(1):1–7. doi:10.1111/j.1574-695X.2002.tb00596.x.
  • Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK. 2003. Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol. 61(5–6):405–412. doi:10.1007/s00253-003-1244-4.
  • Smolinska B, Rowe S. 2015. The potential of Lepidium sativum L. for phytoextraction of Hg-contaminated soil assisted by thiosulphate. J Soils Sediments. 15(2):393–400. doi:10.1007/s11368-014-0997-y.
  • Sobrinho NMBA, Andrade AFM, Lima ESA, Zonta E, Magalhães MOL. 2020. Metals phytoextraction by Cordia africana from soils contaminated with oil drilling waste. Flor Am. 27:20170852. doi:10.1590/2179-8087.085217.
  • Srivastava N. 2016. Phytoremediation of heavy metals contaminated soils through transgenic plants. In: Phytoremediation: management of environmental contaminants. Cham: Springer. p. 345–391.
  • Sruthi P, Puthur JT. 2021. Cadmium stress alleviation potential of Bruguiera cylindrica (L.) Blume enhances in combination with NaCl. Bioremediat J. 26(2):89-112. doi:10.1080/10889868.2021.1911923.
  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L. 2010. Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol. 333(8):597–607. doi:10.1016/j.crvi.2010.03.002.
  • Taghipour M, Jalali M. 2013. Effect of low-molecular-weight organic acids on kinetics release and fractionation of phosphorus in some calcareous soils of western Iran. Environ Monit Assess. 185(7):5471–5482. doi:10.1007/s10661-012-2960-y.
  • Tahmasbian I, Safari Sinegani AA. 2016. Improving the efficiency of phytoremediation using electrically charged plant and chelating agents. Environ Sci Pollut Res Int. 23(3):2479–2486. doi:10.1007/s11356-015-5467-6.
  • Tandy S, Ammann A, Schulin R, Nowack B. 2006. Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing. Environ Pollut. 142(2):191–199. doi:10.1016/j.envpol.2005.10.013.
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. 2012. Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology. vol. 101, p. 133–164. Basel: Springer. doi:10.1007/978-3-7643-8340-4_6.
  • Theptat P, Chavadej S, Scamehorn JF. 2013. A comparison of conventional and biodegradable chelating agent in different type of surfactant solutions for soap scum removal. World Acad Sci Eng Technol. 7:806–809. doi:10.5281/zenodo.1080131.
  • Tripathi RM, Sahoo SK, Mohapatra S, Lenka P, Dubey JS, Puranik VD. 2013. Study of uranium isotopic composition in groundwater and deviation from secular equilibrium condition. J Radioanal Nucl Chem. 295(2):1195–1200. doi:10.1007/s10967-012-1992-7.
  • Turan M, Angin I. 2004. Organic chelate assisted phytoextraction of B, Cd, Mo and Pb from contaminated soils using two agricultural crop species. Acta Agric Scand B Soil Plant Sci. 54(4):221–231. doi:10.1080/09064710410035622.
  • Utsunamyia T. 1980. Japanese patent application 55–72959.
  • Van Oosten M, Pepe O, De Pascale S, Silletti S, Maggio A. 2017. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Bio Technol Agric. 4:5. doi:10.1186/s40538-017-0089-5.
  • Vodyanitskii YN. 2011. Chemical aspects of uranium behavior in soils: a review. Eurasian Soil Sc. 44(8):862–873. doi:10.1134/S1064229311080163.
  • Wang J, Feng X, Anderson CWN, Xing Y, Shang L. 2012. Remediation of mercury contaminated sites–a review. J Hazard Mater. 221–222:1–18. doi:10.1016/j.jhazmat.2012.04.035.
  • Wang J, Feng XB, Anderson CWN, Qiu GL, Ping L, Bao ZD. 2011. Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil. Results from a greenhouse study. J Hazard Mater. 186(1):119–127. doi:10.1016/j.jhazmat.2010.10.097.
  • Wang J, Xia J, Feng X. 2017. Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction. J Environ Manage. 186(Pt 2):233–239. doi:10.1016/j.jenvman.2016.05.031.
  • Wasi S, Tabrez S, Ahmad M. 2013. Toxicological effects of major environmental pollutants: an overview. Environ Monit Assess. 185(3):2585–2593. doi:10.1007/s10661-012-2732-8.
  • Wei S, Li Y, Zhou Q, Srivastava M, Chiu S, Zhan J, Wu Z, Sun T. 2010. Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L. J Hazard Mater. 176(1–3):269–273. doi:10.1016/j.jhazmat.2009.11.023.
  • Wongkongkatep J, Fukushi K, Parkpian P, DeLaune RD, Jugsujinda A. 2003. Arsenic uptake by native fern species in Thailand: Effect of chelating agents on hyperaccumulation of arsenic by Pityrogramma calomelanos. J Environ Sci Health A Tox Hazard Subst Environ Eng. 38(12):2773–2784. doi:10.1081/ESE-120025830.
  • Wu F, Xu F, Ma X, Luo W, Lou L, Wong MH. 2018. Do arsenate reductase activities and oxalate exudation contribute to variations of arsenic accumulation in populations of Pteris vittata? J Soils Sediments. 18(11):3177–3185. doi:10.1007/s11368-018-1987-2.
  • Wu L, Luo Y, Song J. 2007. Manipulating soil metal availability using EDTA and low-molecular-weight organic acids. Phytoremediation. 23:291–303. doi:10.1007/978-1-59745-098-0_22.
  • Xian Y, Wang M, Chen W. 2015. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere. 139:604–608. doi:10.1016/j.chemosphere.2014.12.060.
  • Xiao M, Wu F. 2014. A review of environmental characteristics and effects of low-molecular weight organic acids in the surface ecosystem. J Environ Sci. 26(5):935–954. doi:10.1016/S1001-0742(13)60570-7.
  • Zayed AM, Terry N. 2003. Chromium in the environment: factors affecting biological remediation. Plant Soil. 249(1):139–156. doi:10.1023/A:1022504826342.
  • Zhao S, Lian F, Duo L. 2011. EDTA-assisted phytoextraction of heavy metals by turfgrass from municipal solid waste compost using permeable barriers and associated potential leaching risk. Bioresour Technol. 102(2):621–626. doi:10.1016/j.biortech.2010.08.006.
  • Zhou P, Yan H, Gu B. 2005. Competitive complexation of metal ions with humic substances. Chemosphere. 58(10):1327–1337. doi:10.1016/j.chemosphere.2004.10.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.