158
Views
0
CrossRef citations to date
0
Altmetric
Articles

Application of phytoremediation on soil polluted by heavy metals from sewage sludge

, , &

References

  • AFNOR (French Association for Standardization). Soil quality. Collection of French standards. 3rd edition. Paris – La Defense (1996) 534.
  • Allison LE. 1965. Methods of soil analysis. Part 2. Chemical and microbiological properties. In Black, CA (Ed.), Agronomy Monograph 9, second ed. Madison, Wisconsin: ASA. p. 1367–1378.
  • Alloway BJ, Jackson AP. 1991. The behaviour of heavy metals in sewage sludge-amended soils. Sci. Total Environ. 100:151–176. doi:10.1016/0048-9697(91)90377-Q.
  • Anjum SA, Tanveer M, Hussain S, Bao M, Wang L, Khan I, Ullah E, Tung SA, Abdul Samad R, Shahzad B. 2015. Cadmium toxicity in maize (Zea mays L.): consequences on antioxidative systems, reactiveoxygen species and cadmium accumulation. Environ Sci Pollut Res. 22(21):17022–17030. doi:10.1007/s11356-015-4882-z.
  • Antoniadis V, Shaheen SM, Boersch J, Frohne T, Du Laing G, Rinklebe J. 2017. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. J Environ Manage. 186(Pt 2):192–200. doi:10.1016/j.jenvman.2016.04.036.
  • Antonkiewicz J, Kowalewsk A, Mikołajczak S, Kołodziej B, Bryk M, Spychaj-Fabisiak E, Koliopoulos T, Babula J. 2022. Phytoextraction of heavy metals after application of bottom ash and municipal sewage sludge considering the risk of environmental pollution. J Environ Manage. 306:114517. doi:10.1016/j.jenvman.2022.114517.
  • Aoun M. 2008. Action du cadmium sur les plants de moutarde indienne [Brassica juncea (L.) Czern] néoformés à partir de couches cellulaires minces et issus de semis. Analyses physiologiquesr et rôle des polyamines. Thèse de Doctorat. Université de Bretagne Occidentale, 135 p.
  • Aydinalp C, Marinova S. 2009. The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa.). Bulgarian J Agricult Sci. 15(4):347–350.
  • Baize D. 2000a. Guide des analyses en Pédologie. 2ème éd. Revue et augmentée, Paris: INRA. p. 257.
  • Baize D. 2000b. Teneurs totales en « métaux lourds » dans les sols français. Résultats généraux du programme Aspitet. Courrier de l’environnement de l’INRA, 39:39–54.
  • Bansal P, Sharma P, Dhindsa K. 2001. Impact of Pb2+ and Cd2+ on activities of hydrolytic enzymes in germinating pea seeds. Ann. Agri- Bio. Res. 6:113–122.
  • Baryla A, Carrier P, Franck F, Coulomb C, Sahut C, Havaux M. 2001. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium polluted soil: causes and consequences for phytosynthesis and growth. Planta. 212(5-6):696–709. doi:10.1007/s004250000439.
  • Beesley L, Inneh OS, Norton GJ, Jimenez EM, Pardo T, Clemente R, Dawson JJC. 2014. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut. 186:195–202. doi:10.1016/j.envpol.2013.11.026.
  • Beveridge TJ, Schultze-Lam S. 1995. Detection of anionic sites on bacterial walls, their ability to bind toxic heavy metals and form sedimentable flocs and their contribution to mineralization. In Allen HE, Huang CP, Bailey GW, editors. Metal Speciation and Contamination of Soil. Boca Raton: CRC Press. p. 183–205.
  • Bielders CL, Michels K, Bationo A. 2002. On-farm evaluation of ridging and residue management options in Sahelian millet–cowpea intercrop. 1. Soil quality changes. Soil Use Manage. 18(3):216–222. doi:10.1111/j.1475-2743.2002.tb00242.x.
  • Binet P, Portal JM, Leyval C. 2001. Application of GC-MS to the study of anthracene disappearance in the rhizosphere of ryegrass. Org Geochem. 32(2):217–222. doi:10.1016/S0146-6380(00)00168-6.
  • Boros LE, Wyszkowska J, Kucharski J. 2020. Phytoremediation of soil contaminated with nickel, cadmium and cobalt. Int J Phytoremed. 23(3):252–262. doi:10.1080/15226514.2020.1807907.
  • Brunetti G, Farrag K, Soler Rovira P, Nigro F, Senesi N. 2011. Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma. 160(3–4):517–523. doi:10.1016/j.geoderma.2010.10.023.
  • Casey CE, Hambidge KM. 1980. Epidemiological aspects of human zinc deficiency. In Nriagu JO, editor. Zinc in the Environment, Part II: Health Effects. New York: John Wiley.
  • Castaldi P, Melis P. 2004. Growth and yield characteristics and heavy metals content on tomatoes in different growing media. Commun Soil Sci Plant Anal. 35(1–2):85–98. doi:10.1081/CSS-120027636.
  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJ. 1997. Phytoremediation of soil metals. Curr Opin Biotechnol. 8(3):279–284. doi:10.1016/S0958-1669(97)80004-3.
  • Cherif J, Mediouni C, Ammar WB, Jemal F. 2011. Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solarium lycopersicum). Journal of Environmental Sciences. 23(5):837–844. doi:10.1016/S1001-0742(10)60415-9.
  • Clemente R, Walker DJ, Bernal MP. 2005. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain): the effect of soil amendments. Environ Pollu. 138(1):46–58. doi:10.1016/j.envpol.2005.02.019.
  • Da Silva AJ, Clístenes Williams Araújo do N, da Silva A, Gouveia-Neto, EA. Jr 2012. LED-induced chlorophyll fluorescence spectral analysis for the early detection and monitoring of cadmium toxicity in Maize plants. Water Air Soil Pollut. 223(6):3527–3533. doi:10.1007/s11270-012-1130-8.
  • Daey OK, Francis G, Franken J, Rijssenbeek W, Riedacker A, Foidl N, Jongschaap J, Bindraban P. 2007. Position Paper on Jatropha curcas, state of the art, small and large scale project development. Fact Foundation, p. 7.
  • Daryabeigi Zand A, Mühling KH. 2022. Phytoremediation capability and copper Uptake of Maize (Zea mays L.) in Copper Contaminated Soils. Pollutants. 2(1):53–65. doi:10.3390/pollutants2010007.
  • Diehl R. 1975. Agriculture générale, 2ème éd. Washington, DC: Ballière. p. 231.
  • Dubis B, Szatkowski A, Jankowski KJ. 2022. Sewage sludge, digestate, and mineral fertilizer application affects the yield and energy balance of Amur silvergrass. Industrial Crops Products. 175:114235. doi:10.1016/j.indcrop.2021.114235.
  • Durand JH. 1983. Les sols irrigables. Agence de coopération culturelle and technique. France: P.U.France. p. 190.
  • Ebbs SD, Kochian LV. 1997. Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual. 26(3):776–781. doi:10.2134/jeq1997.00472425002600030026x.
  • Epstein E. 1972. Mineral nutrition of plants: principle and perspectives. New York: John Wiley and Sons.
  • European Union.EU. 2002. Heavy Metals in wastes, European commission on environment. http://ec.europa.eu/environment/waste/studies/pdf/heavymetalsreport.pdf. doi:10.1044/1059-0889(2002/er01)
  • European Union (EU). 2006. Commission regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of European Union L364/5.
  • Ghnaya T, Mnassri M, Ghabriche R, Wali M, Poschenrieder C, Lutts S, Abdelly C. 2015. Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L. Front Plant Sci. 6:863. doi:10.3389/fpls.2015.00863.
  • Giovanni V, Simona M, Angela C, Francesco G, Castiglione S. 2016. Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize. J Environ Manage. 179:93–102. doi:10.1016/j.jenvman.2016.04.055. 0301-4797/
  • Golovatyj SE, Bogatyreva EN, Golovatyi SE. 1999. Effect of levels of chromium content in a soil and its distribution in organs of corn plants. Soil Res Fert. 25:197–204.
  • Greger M, Lindberg S. 1987. Effects of Cd2+ and EDTA on young sugar beets (Beta vulgaris). II-Net uptake and distribution of Mg2+, Ca2+, and Fe2+/Fe3. Physiol Plant. 69(1):81–86. doi:10.1111/j.1399-3054.1987.tb01948.x.
  • Grispen VMJ, HJM Nelissen, JAC Verkleij . 2006. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environ Pollut. 144(1):77–83. doi:10.1016/j.envpol.2006.01.007.0269-7491
  • Gyana RR, Premananda D. 2003. Effect of metal toxicity on plant growth and metabolism. I Zinc Agronomie. 23:3–11.
  • Hattab N, Motelica-Heino M, Faure O, Bouchardon JL. 2015. Effect of fresh and mature organic amendments on the phytoremediation of technosols contaminated with high concentrations of trace elements. J Environ Manage. 159:37–47. doi:10.1016/j.jenvman.2015.05.012.
  • Hernandez-Allica J, Jose MB, Garbisu C. 2008. Assessment of the phytoextraction potential of high biomass crop plants. Environ Pollut. 152(1):32–40. doi:10.1016/j.envpol.2007.06.002.32e40
  • Herrero EM, López-Gonzálvez A, Ruiz MA, Lucas-García JA, Barbas C. 2003. Uptake and distribution of Zinc, Cadmium, lead and copper in Brassica napus var. oleífera and Helianthus annus grown in contaminated soils. Int J Phytoremediation. 5(2):153–167. doi:10.1080/713610177.
  • Houben D, Evrard L, Sonnet P. 2013. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenerg. 57:196–204. doi:10.1016/j.biombioe.2013.07.019.
  • Huang C, Lai C, Xu P, Zeng G, Huang D, Zhang J, Zhang C, Cheng M, Wan J, Wang R. 2017. Lead-induced oxidative stress and antioxidant response provide insight into the tolerance of Phanerochaete chrysosporium to lead exposure. Chemosphere. 187:70–77.
  • Islam E, Liu D, Li T, Yang X, Jin X, Mahmood Q, Tian S, Li J. 2008. Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater. 154(1–3):914–926.
  • Jian L, Bai X, Zhang H, Song X, Li Z. 2019. Promotion of growth and metal accumulation of alfalfa by coinoculation with Sinorhizobium and Agrobacterium under copper and zinc stress. Peer J. 7:e6875. doi:10.7717/peerj.6875.
  • Kabata-Pendias A. 2010. Trace elements in soils and plants, 4th ed. Boca Raton London New York: CRC Press. ISBN 978-1-4200-9368-1 (hardback). p. 505. p.
  • Kabata-Pendias A, Pendias H. 1992. Trace elements in soils and plants. Boca Raton, FL: CRC Press. p. 365.
  • Kacprzak M, Grobelak A, Grosser A, Prasad MNV. 2014. Efficacay of biosolids in assisted phytostabilization of metalliferous acidic sandy soils with five grass species. Int J Phytoremediation. 16(6):593–608. doi:10.1080/15226514.2013.798625.
  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C. 2017. A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor. 182:247–268. doi:10.1016/j.gexplo.2016.11.021.
  • Kumar G, Yadav S, Thawale P, Singh S, Juwarkar A. 2008. Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter e a greenhouse study. Bioresour Technol. 99(6):2078–2082. doi:10.1016/j.biortech.2007.03.032.
  • Lacee C. 1985. Analyse des boues AFEE, tome 1,135p, tome 2,127p.
  • Lassoued N, Bilal E, Rejeb S, Guenole-Bilal I, Khelil MN, Rejeb MN, Gallice F. 2013. Behavior canola (brassica napus) following a sewage sludge treatment. Carpathian J Earth Environ Sci. 8(3):155–165.
  • Li L., Zhang K., Gill RA., Islam F., Farooq M.A., Wang J., and Zhou W. 2018. Ecotoxicological and Interactive Effects of Copper and Chromium on Physiochemical, Ultrastructural, and Molecular Profiling in Brassica napus L. Hindawi BioMed Research International Vol.2018, 17 p. doi:10.1155/2018/9248123
  • Ling T, Gao Q, Du H, Zhao Q, Ren J. 2017. Growing, physiological responses and cd uptake of corn (Zea mays L.) under different Cd supply. Chem Speciat Bioavailab. 29(1):216–221. doi:10.1080/09542299.2017.1400924.
  • Marchiol L, Assolari S, Sacco P, Zerbi G. 2004. Phytoextraction of heavy metals by canola (brassica napus) and radish (raphanus sativus) grown on multicontaminated soil. Environ Pollut. 132(1):21–27. doi:10.1016/j.envpol.2004.04.001.
  • McBride MB. 1995. Toxic metal accumulation from agricultural use of Sludge: are USEPA regulations protective? J Environ Qual. 24(1):5–18. doi:10.2134/jeq1995.00472425002400010002x.
  • McGrath SP, Zhao F-J. 2003. Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol. 14(3):277–282. doi:10.1016/S0958-1669(03)00060-0.
  • Meers E, Ruttens A, Hopgood M, Lesage E, Tack FMG. 2005. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere. 61(4):561–572. doi:10.1016/j.chemosphere.2005.02.026.
  • Moreira H, Ana PGC, Marques AR, Franco AO, Rangel, PM, Castro . 2014. Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by p growth-promoting rhizobacteria. Environ Sci Pollut Res. 21(16):742–953. doi:10.1007/s11356-014-2848-1.
  • Munir A, Usman AR, Al-Faraj AS, Ahmad M, Sallam A, Al-Wabel MI. 2018. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere. 194:327–339. doi:10.1016/j.chemosphere.2017.11.156.
  • Munzuroglu O, Geckil H. 2002. Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol. 43(2):203–213. doi:10.1007/s00244-002-1116-4.
  • Navarro A. 2012. Effect of Sludge amendment on remediation of metal contaminated soils. Minerals. 2(4):473–492. doi:10.3390/min2040473.
  • Nicholson FA, Smith SR, Alloway BJ, Carlton-Smith C, Chambers BJ. 2003. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci.of the Total Environ. 311(1–3):205–219. doi:10.1016/S0048-9697(03)00139-6.
  • Niedźwiecka A, Zamorska-Wojdyła D. 2017. The bioaccumulation of heavy metals in Brassica napus L. in the area around Turów Power Station. Poland. E3S Web of Conferences 17, p. 00065. doi:10.1051/e3sconf/20171700065.
  • Nyamangara J, Mzezewa J. 1999. The effect of long-term sewage sludge application on Zn, Cu, Ni and Pb levels in a clay loam soil under pasture grass in Zimbabwe. Agric Ecosyst Environ. 73(3):199–204. doi:10.1016/S0167-8809(99)00056-0.
  • Olsen S, Cole C, Watanabe F, Dean L. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular.939, US Gov. Print. Office, Washington, DC: USDA.
  • Outten Outten CE, O’Halloran T. 2000. Metalloregulatory systems at the interface between bacterial metal homeostasis and resistance. In Storz G, Hengge Aronis R, editors. Bacterial stress responses. Washington, DC: ASM Press, p. 145–157.
  • Pardo F, Jordán M, Sanfeliu T, Pina S. 2011. Distribution of Cd, Ni, Cr, and Pb in amended soils from Alicante province (SE, Spain). Water Air Soil Pollut. 217(1–4):535–543. doi:10.1007/s11270-010-0607-6.
  • Park J, Kim JY, Kim KW. 2012. Phytoremediation of soil contaminated with heavy metals using Brassica napus. Geosystem Engineering. 15(1):10–18. doi:10.1080/12269328.2012.674428.
  • Park JH, Choppala GH, Bolan NS, Chung JW, Chuasavathi T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 348(1–2):439–451. doi:10.1007/s11104-011-0948-y.
  • Placek A, Grobelak A, Kacprzak M. 2016. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge. Int J Phytoremediation. 18(6):605–618. doi:10.1080/15226514.2015.1086308.
  • Qu J, Lou CQ, Yuan X, Wang XH, Cong Q, Wang L. 2011. The effect of sodium hydrogen phosphate/ citric acid mixtures on phytoremediation by alfalfa & metals availability in soil. J Soil Sci Plant Nutr. 11(2):86–96. doi:10.4067/S0718-95162011000200008.
  • Radziemska M, Gusiatin ZM, Bęś A, Czajkowska J, Mazur Z, Hammerschmiedt T, Sikorski Ł, Kobzova E, Klik BK, Sas W, et al. 2021. Can the application of municipal Sewage Sludge compost in the aided phytostabilization technique provide an effective waste management method? Energies. 14(7):1984. doi:10.3390/en14071984.
  • Radziemska M, Mazur Z, Jeznach J. 2013. Influence of applying halloysite and zeolite to soil contaminated with nickel on the content of selected elements in Maize (Zea mays L.). Chem Eng Trans. 32:301–306.
  • Rodriguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueno MC, del Rio LA, Sandalio LM. 2009. Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol. 150(1):229–243. doi:10.1104/pp.108.131524.
  • Romdhane L, Panozzo A, Radhouane L, Dal Cortivo C, Barion G, Vamerali T. 2021. Root characteristics and metal uptake of Maize (Zea mays L.) under extreme soil contamination. Agronomy. 11(1):178. doi:10.3390/agronomy11010178.
  • Rosca M, Cozma P, Minut M, Hlihor R-M, Bețianu C, Diaconu M, Gavrilescu M. 2021. New evidence of model Crop Brassica napus L. in soil clean-up: comparison of tolerance and accumulation of lead and cadmium. Plants. 10(10):2051. doi:10.3390/plants10102051.
  • Yu R, Ji J, Yuan X, Song Y, Wang C. 2012. Accumulation and translocation of heavy metalsin the canola (Brassica napus L.) -soil systemin Yangtze River Delta, China. Plant Soil. 353(1–2):33–45. doi:10.1007/s11104-011-1006-5.
  • Rutkowska B, Szulc W, Błaszczak E, Kazberuk W, Ptasiński D. 2020. Restoration of marginal soils polluted with heavy metals to agricultural production. J Soil Water Conserv. 75(5):610–616. doi:10.2489/jswc.2020.00215.
  • Senou I. 2014. Phytoextraction du cadmium, du cuivre, du plomb et du zinc par cinq espèces végétales (Vetiveria nigritana (Benth.), Oxytenanthera abyssinica (A. Rich.) Munro, Barleria repens (Ness), Cymbopogon citratus (DC.) Stapf et Lantana camara Linn. Cultivées sur des sols ferrugineux tropicaux et vertiques. Thèse de doctorat Universite Polytechnique De Bobo-Dioulasso (UPB).
  • Sharma RK, Agrawal M, Marshall F. 2007. Heavy metal contamination of soil and vegetables in suburban area of Varanasi, India. Ecotoxicol Environ Saf. 66(2):258–266. doi:10.1016/j.ecoenv.2005.11.007.
  • Singh J, Hembram P, Basak J. 2014. Potential of Vigna unguiculata as a phytoremediation plant in the remediation of zn from contaminated soil. Am J Plant Sci. 5(9):1156–1162. doi:10.4236/ajps.2014.59128.
  • Smilde KW, Van Luit B, Van Driel W. 1992. The extraction by soil and absorption by plants of applied zinc and cadmium. Plant Soil. 143(2):233–238. doi:10.1007/BF00007878.
  • Soltner D. 1981. Phytotechnie générale: les bases de la production végétale: le sol, le climat, la plante. Tome 1: Le sol, 10eme éd. Angers, France: Sciences et Techniques agricoles.
  • Stotzky G, Rem LT. 1967. Influence of clay minerals on microorganisms. IV. Montmorillonite and kaolinite on fungi. Can J Microbiol. 13(11):1535–1550. doi:10.1139/m67-202.
  • Vamerali T, Bandiera M, Coletto L, Zanetti F, Dickinson NM, Mosca G. 2009. Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environ Pollut. 157(3):887–894. doi:10.1016/j.envpol.2008.11.003.
  • Van Ranst E, Verloo M, Demeyer A, Pauwels JM. 1999. Manual for the Soil Chemistry and Fertility Laboratory. Ghent, Belgium: Ghent University, Faculty for Agricultural and Applied Biological Sciences. p. 243.
  • Varavipour M, Givehchi S, Mashal M. 2009. Heavy metals distributions and uptake in field-grown maize after application of sewage sludge in soil of south eastern. Iran Asian J Chem. 21(1):23–30.
  • Vinit-Dunand F, Epron D, Alaoui-Sossé B, Badot P. 2002. Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Sci. 163(1):53–58. 2002 doi:10.1016/S0168-9452(02)00060-2.
  • Vishandas S, Memon KS, Mahmood-ul-Hassan M. 2014. EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania. Environ Monit Assess. 186(6):3957–3968. doi:10.1007/s10661-014-3671-3.
  • Xu W, Lu G, Dang Z, Liao C, Chen Q, Yi X. 2013. Uptakeand distribution of Cd in Sweet Maize grown on contaminated soils: a field-scale study. Bioinorg Chem Appl. 2013:959764–959768. doi:10.1155/2013/959764.
  • Wyszkowski M, Radziemska M. 2010. Effects of chromium (III and VI) on spring barley and maize biomass yield and content of nitrogenous compounds. J Toxicol Environ Health A. 73(17–18):1274–1282. doi:10.1080/15287394.2010.492016.
  • Wyszkowski M, Radziemska M. 2013. Influence of chromium (III) and (VI) on the concentration of mineral elements in oat (Avena sativa L.). Fresenius Environ. Bull. 22:979–986.
  • Zhang H, Dang Z, Zheng LC, Yi XY. 2009. Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). Int J Environ Sci Technol. 6(2):249–258. doi:10.1007/BF03327629.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.