267
Views
7
CrossRef citations to date
0
Altmetric
Articles

An inexpensive phytoremediation system for treating 50,000 L/day of sewage

, , &

References

  • Abbasi SA. 1998. Water quality – sampling and analysis. New Delhi: Discovery Publishing House. p. viii + 212.
  • Abbasi SA. 2021. SHEFROL Trademark number 4735305, granted by Intellectual Property India, 04 May 2021.
  • Abbasi T, Abbasi SA. 2010. Factors which facilitate waste water treatment in presence of aquatic weeds- the mechanism of the weed’s purifying action. Int J Environ Stud. 67(3):349–371. doi:10.1080/00207230902978380.
  • Abbasi T, Abbasi SA. 2018. Perspectives in pollution control and sustainable development. New Delhi: Discovery Publishing House. p. xi+569. ISBN: 978-9-3505-6889-7.
  • Abbasi SA, Tabassum-Abbasi, Ponni G, Tauseef SM. 2019. Potential of joyweed Alternanthera sessilis for rapid treatment of domestic sewage in SHEFROL® bioreactor. Int J Phytoremediation. 21(2):160–169. doi:10.1080/15226514.2018.1488814.
  • Abbasi SA, Gajalakshmi S, Abbasi T. 2012. Zero waste generating, zero chemical using, high rate wastewater treatment system – SHEFROL. Off J Patent Off. 20:7611–7611.
  • Abbasi SA, Gajalakshmi S, Abbasi T. 2018a. Dynamic self-sustaining and self-propagating system for wastewater treatment. Patent number 302282, published in Official Journal of Patent Office 05, 7611, 2012, and granted in October 2018.
  • Abbasi SA, Nipaney PC. 1995. Productivity of aquatic weed Salvinia (Salvinia molesta, Mitchell) in natural waters. Ecol Environ Conserv. 1(1–4):11–12.
  • Abbasi SA, Ponni G, Tauseef SM. 2018b. Proficiency of brahmi (Indian pennywort) Hydrocotyle asiatica in the one-pot secondary and tertiary treatment of sewage. Nat Environ Pollut Technol. 17(2):603–609.
  • Abbasi SA, Ponni G, Tauseef SM. 2018c. Marsilea quadrifolia: a new bioagent for treating wastewater. Water Air Soil Pollut. 229(133):1–8.
  • Abbasi SA, Tauseef SM. 2018a. Use of the terrestrial weed Alternanthera ficoidea in treating greywater in soil-less SHEFROL® bioreactors. Water Sci Technol. 77(7–8):2005–2013. doi:10.2166/wst.2018.093.
  • Abbasi SA, Tauseef SM. 2018b. A system for rapid and inexpensive treatment of sewage using the weed false daisy (Ecliptaprostrata). Water Environ J. 32(4):573–584. doi:10.1111/wej.12355.
  • Abbasi SA, Tauseef SM. 2019. Rapid treatment of greywater (household sewage) by terrestrial weed Achyranthes aspera in SHEFROL® reactors. Environ Prog Sustainable Energy. 38(2):467–476. doi:10.1002/ep.12994.
  • Akratos CS, Tsihrintzis VA. 2007. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol Eng. 29(2):173–191. doi:10.1016/j.ecoleng.2006.06.013.
  • Antonopoulos VZ, Antonopoulos AV. 2017. Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables. Comput Electron Agric. 132:86–96. doi:10.1016/j.compag.2016.11.011.
  • Babatunde AO, Zhao YQ, Doyle RJ, Rackard SM, Kumar JLG, Hu YS. 2011. On the fit of statistical and the k-C* models to projecting treatment performance in a constructed wetland system. J Environ Sci Health A Tox Hazard Subst Environ Eng. 46(5):490–499. doi:10.1080/10934529.2011.551729.
  • Bhat MA, Abbasi T, Abbasi SA. 2015. Feasibility of using salvinia (Salvinia molesta) as a bioagent for continuous treatment of sewage in SHEFROL® bioreactors. Int J Environ Sci Eng Res. 6(2):1–4.
  • Bhat MA, Abbasi T, Abbasi SA. 2018. Soil-less use of aquatic macrophytes in wastewater treatment and the novel SHEFROL® bioreactor. Adv Health Environ Saf. Chapter 30, p. 297–316. doi:10.1007/978-981-10-7122-5_30.
  • Biswal BK, Balasubramanian R. 2022. Constructed wetlands for reclamation and reuse of wastewater and urban stormwater: a review. Front Environ Sci. 10:836289. doi:10.3389/fenvs.2022.836289.
  • Brix H, Schierup HH, Arias CA. 2007. Twenty years experience with constructed wetland systems in Denmark—what did we learn? Water Sci Technol. 56(3):63–68. doi:10.2166/wst.2007.522.
  • Colares GS, Dell’Osbel N, Barbosa CV, Lutterbeck C, Oliveira GA, Rodrigues LR, Bergmann CP, Lopez DR, Rodriguez AL, Vymazal J, et al. 2021. Floating treatment wetlands integrated with microbial fuel cell for the treatment of urban wastewaters and bioenergy generation. Sci Total Environ. 766:142474. doi:10.1016/j.scitotenv.2020.142474.
  • CPCB (Central Pollution Control Board). 2021. Status of STPs: national inventory of sewage treatment plants as on 08 March 2021. https://cpcb.nic.in/status-of-stps/
  • de Oliveira JF, Fia R, Gomes ACC, Bigogno VS, de Souza Antônio T, Alves MRS, da Cruz TC. 2021. Multivariate criteria applied in the performance of Tifton 85 grass in a constructed wetland: effects of organic, nutritional, and sodium loads from swine wastewater. Environ Sci Pollut Res Int. 28(17):21314–21325. doi:10.1007/s11356-020-11391-x.
  • Eaton AD, Clesceri LS, Franson MAH, Rice EW, Greenberg AE. 2005. Standard methods for the examination of water & wastewater. New York: American Water Works Association. ISBN 0875530478, 9780875530475.
  • Ganeshkumar T, Premalatha M, Gajalakshmi S, Abbasi SA. 2014. A new process for the rapid and direct vermicomposting of the aquatic weed salvinia (Salvinia molesta). Bioresour Bioprocess. 1(1):1–5. doi:10.1186/s40643-014-0026-4.
  • Hazra M, Durso LM. 2022. Performance efficiency of conventional treatment plants and constructed wetlands towards reduction of antibiotic resistance. Antibiotics. 11(1):114. doi:10.3390/antibiotics11010114.
  • Heng SY, Ridwan WM, Kumar P, Ahmed AN, Fai CM, Birima AH, El-Shafie A. 2022. Artificial neural network model with different backpropagation algorithms and meteorological data for solar radiation prediction. Sci Rep. 12(1):1–18. doi:10.1038/s41598-022-13532-3.
  • Hussain N, Abbasi T, Abbasi SA. 2016. Vermiremediation of an invasive and pernicious weed salvinia (Salvinia molesta). Ecol Eng. 91:432–440. doi:10.1016/j.ecoleng.2016.03.010.
  • Hussain N, Abbasi T, Abbasi SA. 2017. Enhancement in the productivity of ladies finger (Abelmoschus esculentus) with concomitant pest control by the vermicompost of the weed salvinia (Salvinia molesta, Mitchell. Int J Recycl Org Waste Agricult. 6(4):335–343. doi:10.1007/s40093-017-0181-7.
  • Hussain N, Abbasi T, Abbasi SA. 2018. Generation of highly potent organic fertilizer from pernicious aquatic weed Salvinia molesta. Environ Sci Pollut Res Int. 25(5):4989–5002. doi:10.1007/s11356-017-0826-0.
  • Ilyas H, Masih I. 2017. The performance of the intensified constructed wetlands for organic matter and nitrogen removal: a review. J Environ Manage. 198(Pt 1):372–383. doi:10.1016/j.jenvman.2017.04.098.
  • Ji Z, Tang W, Pei Y. 2022. Constructed wetland substrates: a review on development, function mechanisms, and application in contaminants removal. Chemosphere. 286(Pt 1):131564. doi:10.1016/j.chemosphere.2021.131564.
  • Jóźwiakowski K, Bugajski P, Mucha Z, Wójcik W, Jucherski A, Nastawny M, Siwiec T, Mazur A, Obroślak R, Gajewska M., 2017. Reliability and efficiency of pollution removal during long-term operation of a one-stage constructed wetland system with horizontal flow. Separ Purif Technol. 187:60–66. doi:10.1016/j.seppur.2017.06.043.
  • Kadlec RH. 2000. The inadequacy of first-order treatment wetland models. Ecol Eng. 15(1–2):105–119. doi:10.1016/S0925-8574(99)00039-7.
  • Kiiza C, Pan S, Bockelmann-Evans B, Babatunde A. 2020. Predicting pollutant removal in constructed wetlands using Artificial Neural Networks (ANNs). Water Sci Eng. 13(1):14–23. doi:10.1016/j.wse.2020.03.005.
  • Kulshreshtha NM, Verma V, Soti A, Brighu U, Gupta AB. 2022. Exploring the contribution of plant species in the performance of constructed wetlands for domestic wastewater treatment. Bioresour Technol Rep. 18:101038. doi:10.1016/j.biteb.2022.101038.
  • Kuzyakov Y, Razavi BS. 2019. Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biol Biochem. 135:343–360. doi:10.1016/j.soilbio.2019.05.011.
  • Li C, Cao J, Ren H, Li Y, Tang S. 2015. Comparison on kinetics and microbial community among denitrifcation process fed by different kinds of volatile fatty acids. Process Biochem. 50(3):447–455. doi:10.1016/j.procbio.2015.01.005.
  • Li QG, Long ZQ, Wang HJ, Zhang GM. 2021. Functions of constructed wetland animals in water environment protection – a critical review. Sci Total Environ. 760:144038. doi:10.1016/j.scitotenv.2020.144038.
  • Liu H, Hu Z, Zhang J, Ngo HH, Guo W, Liang S, Fan J, Lu S, Wu H. 2016. Optimizations on supply and distribution of dissolved oxygen in constructed wetlands: a review. Bioresour Technol. 214:797–805. doi:10.1016/j.biortech.2016.05.003.
  • Liu R, Zhao Y, Doherty L, Hu Y, Hao X. 2015. A review of incorporation of constructed wetland with other treatment processes. Chem Eng J. 279:220–230. doi:10.1016/j.cej.2015.05.023.
  • Lu F, Chen Z, Liu WQ, Shao HB. 2016. Modeling chlorophyll-a concentrations using an artificial neural network for precisely eco-restoring lake basin. Ecol Eng. 95:422–429. doi:10.1016/j.ecoleng.2016.06.072.
  • Manzoor AS, Ul Ain Bhutto S, Abodif AM, Muneer SA, Chandio S, Gang X. 2021. Removal efficiency of antibiotics from water through constructed wetlands, a review. Global Nest Journal. 23(2):309–322. doi:10.30955/gnj.003497.
  • Mathworks. 2017. Global optimization toolbox: user’s guide (R2017b). Natick (MA): The MathWorks, Inc.
  • MJP: Maharashtra Jeevan Pradhikaran 2021. Communication. https://mjp.maharashtra.gov.in/sites/default/files/mjp_state_tariff_oct.pdf, 23 pages.
  • MJP: Maharashtra Jeevan Pradhikaran, Government of Maharashtra 2022. https://mjp.maharashtra.gov.in/en/dsr
  • Moreira FD, Dias EHO. 2020. Constructed wetlands applied in rural sanitation: a review. Environ Res. 190:110016. doi:10.1016/j.envres.2020.110016.
  • Narain S. (Ed). (2016). State of India’s environment. A down to earth annual (State of India’s environment). New Delhi: Centre for Science and Environment.
  • Negi D, Verma S, Singh S, Daverey A, Lin J. 2022. Nitrogen removal via anammox process in constructed wetland – a comprehensive review. Chem Eng J. 437:135434. doi:10.1016/j.cej.2022.135434.
  • Nuamah LA, Li Y, Pu Y, Nwankwegu AS, Haikuo Z, Norgbey E, Banahene P, Bofah-Buoh R. 2020. Constructed wetlands, status, progress, and challenges. The need for critical operational reassessment for a cleaner productive ecosystem. J Cleaner Prod. 269:122340. doi:10.1016/j.jclepro.2020.122340.
  • Polińska W, Kotowska U, Kiejza D, Karpińska J. 2021. Insights into the use of phytoremediation processes for the removal of organic micropollutants from water and wastewater; a review. Water. 13(15):2065. doi:10.3390/w13152065.
  • PWD: Public Works Department, Government of Maharashtra. 2022. https://www.nagarpalika.co.in/wp-content/uploads/2020/08/PWD-SSR-18-19-wef-Dated-19.9.18.pdf.
  • Rampuria A, Kulshreshtha NM, Gupta A, Brighu U. 2021. Novel microbial nitrogen transformation processes in constructed wetlands treating municipal sewage: a mini-review. World J Microbiol Biotechnol. 37(3):1–11. doi:10.1007/s11274-021-03001-w.
  • Sahtouris E. 1990. Beautiful bulrushes, remarkable reeds: The water reclamation miracles of Kaethe Seidel. LifeWeb. https://ratical.org/LifeWeb/Articles/rushes.html (Last accessed September 2022).
  • Sengupta A. 2018. Water. In: Narain S, editor. State of India’s environment. New Delhi: Centre for Science and Environment. p. vii+385.
  • Smith WH, Reddy KR. 1987. Aquatic macrophytes for water treatment and resource recovery. Orlando (FL): Magnolia Publishing. ISBN 09-414-63001.
  • Spellman FR. 2009. Water and wastewater treatment plant operation. Boca Raton: CRC Press. p. xxxix + 960.
  • Spieles DJ. 2022. Wetland construction, restoration, and integration: a comparative review. Land. 11(4):554. doi:10.3390/land11040554.
  • Tang S, Liao Y, Xu Y, Dang Z, Zhu X, Ji G. 2020a. Microbial coupling mechanisms of nitrogen removal in constructed wetlands: a review. Bioresour Technol. 314:123759. doi:10.1016/j.biortech.2020.123759.
  • Tang X, Wen Y, He Y, Jiang H, Dai X, Bi X, Wagner M, Chen H. 2020b. Full-scale semi-centralized wastewater treatment facilities for resource recovery: operation, problems and resolutions. Water Sci Technol. 82(2):303–314. doi:10.2166/wst.2020.169.
  • Tare V. 2010. Sewage treatment in class I towns: recommendations and guidelines. IIT Kanpur Report 003 GBP IIT EQP S&R 02 Ver. 1, IIT Kanpur. p. 23.
  • Tabassum-Abbasi, Abbasi T, Luithui C, Abbasi SA. 2020a. A model to forecast methane emissions from tropical and subtropical reservoirs on the basis of Artificial Neural Networks. Water. 12(1):145. doi:10.3390/w12010145.
  • Tabassum-Abbasi, Abbasi T, Luithui C, Abbasi SA. 2020b. Modelling methane and nitrous oxide emissions from rice paddy wetlands in India using Artificial Neural Networks (ANNs). Water. 12(3):751. doi:10.3390/w11102169.
  • Tabassum-Abbasi, Patnaik P, Abbasi SA. 2021a. Screening of twenty-three common terrestrial plants for their possible use as phytoremediators of greywater in SHEFROL®. Taiwan Water Conserv. 69(2):24–35. doi:10.6937/TWC.202106/PP_69(2).0004.
  • Tabassum-Abbasi, Patnaik P, Abbasi SA. 2021b. Use of the Ornamental Plant sadabahaar (Catharanthus roseus) in beautifying and enhancing the SHEFROL® greywater treatment unit, with concomitant increase in the level of treatment. Taiwan Water Conserv. 69(4):73–87.
  • Tabassum-Abbasi, Patnaik P, Rahi R, Abbasi SA. 2022. A circular biorefinery-integrating wastewater treatment with the generation of an energy precursor and an organic fertilizer. Sustainability. 14(9):5714. doi:10.3390/su14095714.
  • Ullah H, Khan I, AlSalman H, Islam S, Asif Zahoor Raja M, Shoaib M, Gumaei A, Fiza M, Ullah K, Rahman M, et al. 2021. Levenberg–Marquardt backpropagation for numerical treatment of micropolar flow in a porous channel with mass injection. Complexity. 2021:1–12. doi:10.1155/2021/5337589.
  • Varma M, Gupta AK, Ghosal PS, Majumder A. 2020. A review on performance of constructed wetlands in tropical and cold climate: insights of mechanism, role of influencing factors, and system modification in low temperature. Sci Total Environ. 755:142540.
  • Vymazal J. 2013. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Res. 47(14):4795–4811. doi:10.1016/j.watres.2013.05.029.
  • Wang J, Long Y, Yu G, Wang G, Zhou Z, Li P, Zhang Y, Yang K, Wang S. 2022. A review on microorganisms in constructed wetlands for typical pollutant removal: species, function, and diversity. Front Microbiol. 13:845725. doi:10.3389/fmicb.2022.845725.
  • Wei B, He W, Limei T, Jie Z, Huichao J, Wenbo D, Luquan R. 2021. Small structure, large effect: Functional surfaces inspired by salvinia leaves. Small Struct. 2(9):2100079. doi:10.1002/sstr.202100079.
  • Yan J, Hu X, Chen M, Zhang J, Guo F, Vymazal J, Chen Y. 2022. Meta-analysis of the removal of trace organic contaminants from constructed wetlands: conditions, parameters, and mechanisms. Ecol Eng. 178:106596. doi:10.1016/j.ecoleng.2022.106596.
  • Yu G, Wang G, Chi T, Du C, Wang J, Li P, Zhang Y, Wang S, Yang K, Long Y, et al. 2022. Enhanced removal of heavy metals and metalloids by constructed wetlands: a review of approaches and mechanisms. Sci Total Environ. 821:153516. doi:10.1016/j.scitotenv.2022.153516.
  • Zhang H, Tang W, Wang W, Yin W, Liu H, Ma X, Zhou Y, Lei P, Wei D, Zhang L, et al. 2021. A review on China’s constructed wetlands in recent three decades: application and practice. J Environ Sci. 104:53–68. doi:10.1016/j.jes.2020.11.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.