140
Views
0
CrossRef citations to date
0
Altmetric
Articles

Lead-induced modification of growth and yield of Linum usitatissimum L. and its soil remediation potential

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ali H, Khan E, Ilahi I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity and bioaccumulation. J Chem. 2019:1–14. doi:10.1155/2019/6730305.
  • Alia N, Sardar K, Said M, Salma K, Sadia A, Sadaf S, Toqeer A, Miklas S. 2015. Toxicity and bioaccumulation of heavy metals in Spinach (Spinacia oleracea) grown in a controlled environment. IJERPH. 12(7):7400–7416. doi:10.3390/ijerph120707400.
  • Allen SE, Grimshaw HM, Rowland AP. 1986. Chemical analysis. In: Moore PD, Chapman SB, editors. Methods in plant ecology. Oxford: Blackwell Scientific Publication; p. 285–344.
  • Angelova V, Ivanova R, Delibaltova V, Ivanov K. 2004. Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Indust Crops Prod. 19(3):197–205. doi:10.1016/j.indcrop.2003.10.001.
  • Aprile A, De Bellis L. 2020. Editorial for special issue “Heavy metals accumulation, toxicity, and detoxification in plants”. IJMS. 21(11):4103. doi:10.3390/ijms21114103.
  • Arnon DI. 1949. Copper enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol. 24(1):1–15. doi:10.1104/pp.24.1.1.
  • Arshad M, Naqvi N, Gul I, Yaqoob K, Bilal M, Kallerhoff J. 2020. Lead phytoextraction by Pelargonium hortorum: comparative assessment of EDTA and DIPA for Pb mobility and toxicity. Sci Total Environ. 748:141496. doi:10.1016/j.scitotenv.2020.141496.
  • Ashraf U, Kanu AS, Deng Q, Mo Z, Pan S, Tian H, Tang X. 2017. Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Front Plant Sci. 8:259. doi:10.3389/fpls.2017.00259.
  • Ashraf U, Kanu AS, Mo Z, Hussain S, Anjum SA, Khan I, Abbas RA, Tang X. 2015. Lead (Pb) toxicity in rice: effects, mechanisms and mitigation strategies- a mini review. Environ Sci Pollut Res Int. 22(23):18318–18332. doi:10.1007/s11356-015-5463-x.
  • Aslam M, Aslam A, Sheraz M, Ali B, Ulhassan Z, Najeeb U, Zhou W, Gill RA. 2020. Lead toxicity in cereals: mechanistic insight into toxicity, mode of action, and management. Front Plant Sci. 11:587785. doi:10.3389/fpls.2020.587785.
  • Badr N, Fawzy M, Al-Qahtani KM. 2012. Phytoremediation: an ecological solution to heavy-metal-polluted soil and evaluation of plant removal ability. World Appl Sci J. 16(9):1292–1301.
  • Baker AJM. 1981. Accumulators and excluders‐strategies in the response of plants to heavy metals. J Plant Nutrition. 3(1-4):643–654. doi:10.1080/01904168109362867.
  • Barcelo J, Poschenrieder C. 2003. Phytoremediation: principles and perspectives. Contrib Sci. 2:333–344. doi:10.2436/CS.V0I0.310.
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207. doi:10.1007/BF00018060.
  • Chmielowska-Bąk J, Deckert J. 2021. Plant recovery after metal stress – a review. Plants. 10(3):450. doi:10.3390/plants10030450.
  • Cui S, Zhou Q, Chao L. 2007. Potential hyper-accumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environ Geol. 51(6):1043–1048. doi:10.1007/s00254-006-0373-3.
  • Dinu C, Gheorghe S, Tenea AG, Stoica C, Vasile G-G, Popescu RL, Serban EA, Pascu LF. 2021. Toxic metals (As, Cd, Ni, Pb) impact in the most common medicinal plant (Mentha piperita). IJERPH. 18(8):3904. doi:10.3390/ijerph18083904.
  • El-Khawaga HA. 2017. Influence of lead polluted soil on growth, minerals content and yield components of flax (Linum usitatissimum L.) and canola (Brassica napus L.). Middle East J. Appl Sci. 7(4):1052–1065.
  • Fahr M, Laplaze L, Bendaou N, Hocher V, Mzibri ME, Bogusz D, Smouni A. 2013. Effect of lead on root growth. Front Plant Sci. 4:175. doi:10.3389/fpls.2013.00175.
  • Farooqi ZR, Iqbal MZ, Kabir M, Shafiq M. 2009. Toxic effects of lead and cadmium on germination and seedling growth of Albizia lebbeck Benth. Pak J Bot. 41(1):27–33.
  • Fitz WJ, Wenzel WW. 2002. Arsenic transformation in the soil- rhizosphere-plant system, fundamentals and potential application of phytoremediation. J Biotechnol. 99(3):259–278. doi:10.1016/s0168-1656(02)00218-3.
  • Ghasera KM, Rashid SA, Gupta K. 2021. Heavy metals abundance and distribution in soil, groundwater and vegetables in parts of Aligarh, Uttar Pradesh, India: implication for human health risk assessment. Current Science. 121(8):1056–1063. doi:10.18520/cs/v121/i8/1056-1063.
  • Gul I, Manzoor M, Hashim N, Shah GM, Waani SPT, Shahid M, Antoniadis V, Rinklebe J, Arshad M. 2021. Challenges in microbially and chelate-assisted phytoextraction of cadmium and lead – a review. Environ Pollut. 287:117667. doi:10.1016/j.envpol.2021.117667.
  • Gul I, Manzoor M, Hashmi I, Bhatti MF, Kallerhoff J, Arshad M. 2019a. Plant uptake and leaching potential upon application of amendments in soils spiked with heavy metals (Cd and Pb). J Environ Manage. 249:109408. doi:10.1016/j.jenvman.2019.109408.
  • Gul I, Manzoor M, Silvestre J, Rizwan M, Hina K, Kallerhoff J, Arshad M. 2019. EDTA-assisted phytoextraction of lead and cadmium by Pelargonium cultivars grown on spiked soil. Int J Phytoremediation. 21(2):101–110. doi:10.1080/15226514.2018.1474441.
  • Hill AF. 1952. Economic botany. New Delhi: Tata McGraw-Hill Publishing Company Ltd.
  • Hosman ME, El-Feky SS, Elshahawy MI, Shaker EM. 2017. Mechanism of phytoremediation potential of flax (Linum usitatissimum L.) to Pb, Cd and Zn. Asian J Plant Sci Res. 7(4):30–40.
  • Jasmin P, Prian WZ, Mondol MN, Ullah SM, Chamon AS. 2019. Effects of lead on growth, yield and mineral nutrition of rice (Oryza sativa L.). J Biodivers Conserv Bioresour Manag. 5(2):83–92. doi:10.3329/jbcbm.v5i2.44918.
  • Jhala AJ, Hall LM. 2010. Flax (Linum usitatissimum L.): current uses and future applications. Austral J Basic Appl Sci. 4(9):4304–4312.
  • Kaur G, Asthir B. 2015. Proline: a key player in plant abiotic stress tolerance. Biologia Plant. 59(4):609–619. doi:10.1007/s10535-015-0549-3.
  • Kumar A, Prasad MNV, Sytar O. 2012. Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere. 89(9):1056–1065. doi:10.1016/j.chemosphere.2012.05.070.
  • Li B, Chen D, Yang Y, Li X. 2019. Effects of soil properties on accumulation characteristics of copper, manganese, zinc and cadmium in Chinese turnip. Plant Divers. 41(5):340–346. doi:10.1016/j.pld.2019.06.006.
  • Li MS, Luo YP, Su ZY. 2007. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environ Pollut. 147(1):168–175. doi:10.1016/j.envpol.2006.08.006.
  • Liu D, Jiang W, Wang W, Zhao F, Lu C. 1994. Effect of lead on root growth, cell division, and nucleolus of Allium cepa. Environ Pollut. 86(1):1–4. doi:10.1016/0269-7491(94)90002-7.
  • Liu D, Xue P, Meng Q, Zou J, Gu J, Jiang W. 2009. Pb/Cu effects on the organization of microtubule cytoskeleton in interphase and mitotic cells of Allium sativum L. Plant Cell Rep. 28(4):695–702. doi:10.1007/s00299-009-0669-3.
  • Liu N, Lin Z-F, Lin G-Z, Song L-Y, Chen S-W, Mo H, Peng C-L. 2010. Lead and cadmium induced alterations of cellular functions in leaves of Alocasia macrorrhiza L. Schott. Ecotoxicol Environ Saf. 73(6):1238–1245. doi:10.1016/j.ecoenv.2010.06.017.
  • Luo L, Wang B, Jiang J, Fitzgerald M, Huang Q, Yu Z, Li H, Zhang J, Wei J, Yang C, et al. 2020. Heavy metal contaminations in herbal medicines: determination, comprehensive risk assessments, and solutions. Front Pharmacol. 11:595335. doi:10.3389/fphar.2020.595335.
  • Malar S, Manikandan R, Favas PJC, Sahi SV, Venkatachalam P. 2014. Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: a potential plant for phytoremediation. Ecotoxicol Environ Saf. 108:249–257. doi:http://dx.doi.org/10.1016/j.ecoenv.2014.05.018.
  • Malar S, Vikram SS, Favas PJC, Perumal V. 2016. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Botl Studs. 55(1):1–11. doi:10.1186/s40529-014-0054-6.
  • Malik M, Mahmood S, Noreen S, Abid R, Ghaffar S, Zahra S, Shah T, Ahmad A. 2021. Lead contamination affects the primary productivity traits, biosynthesis of macromolecules and distribution of metal in durum wheat (Triticum durum L.). Saudi J Biol Sci. 28(9):4946–4956. doi:10.1016/j.sjbs.2021.06.093.
  • Manzoor M, Gul I, Manzoor A, Kallerhoff J, Arshad M. 2021. Optimization of integrated phytoremediation system (IPS) for enhanced lead removal and restoration of soil microbial activities. Chemosphere. 277:130243. doi:10.1016/j.chemosphere.2021.130243.
  • Mendez MO, Maier RM. 2008. Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect. 116(3):278–283. doi:10.1289/ehp.10608.
  • Monni S, Salemaa M, Millar N. 2000. The tolerance of Empetrum nigrum to copper and nickel. Environ Pollut. 109(2):221–229. doi:10.1016/S0269-7491(99)00264-X.
  • Osman MEH, El-Feky SS, El shahawy MI, Shaker EM. 2017. Efficiency of flax (Linum usitatissimum L.) as a phytoremediator plant for the contaminated soils with heavy metals. Int J Agric Environ Res. 3(4):3577–3600.
  • Pandey SK, Singh H. 2011. A simple, cost-effective method for leaf area estimation. J Bot. 2011:1–6. doi:10.1155/2011/658240.
  • Pourrut B, Shahid M, Camille D, Peter W, Eric P. 2011. Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol. 213:113–136. doi:10.1007/978-1-4419-9860-6_4.
  • Radovanovic V, Djekic I, Zarkovic B. 2020. Characteristics of cadmium and lead accumulation and transfer by Chenopodium quinoa Will. Sustainability. 12(9):3789. doi:10.3390/su12093789.
  • Rana V, Ram S, Nehra K. 2017. Review Proline biosynthesis and its role in abiotic stress. Int J Agric Innovat Res. 6(3):473–478.
  • Rani J, Agarwal T, Chaudhary S. 2021. Heavy metals in agricultural soils of National Capital Region, Delhi: levels and ecological risk. Curr World Environ. 16(3):804–817. doi:http://dx.doi.org/10.12944/CWE.16.3.13.
  • Saleem MH, Ali S, Hussain S, Kamran M, Chattha MS, Ahmad S, Aqeel M, Rizwan M, Aljarba NH, Alkahtani S, et al. 2020. Flax (Linum usitatissimum L.): a potential candidate for phytoremediation? Biological and economical points of view. Plants. 9(4):496. doi:10.3390/plants9040496.
  • Saleem MH, Kamran M, Zhou Y, Parveen A, Rehman M, Ahmar S, Malik Z, Mustafa A, Anjum RMA, Wang B, et al. 2020. Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper. J Environ Manage. 257:109994. doi:10.1016/j.jenvman.2019.109994.
  • Seregin IV, Ivanov VB. 2001. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol. 48(4):523–544. doi:10.1023/A:1016719901147.
  • Seregin IV, Shpigun LK, Ivanov VB. 2004. Distribution and toxic effects of cadmium and lead on maize roots. Russ J Plant Physiol. 51(4):525–533. doi:10.1023/B:RUPP.0000035747.42399.84.
  • Seregin IV, Kozhevnikova AD. 2008. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ J Plant Physiol. 55(1):1–22. doi:10.1134/S1021443708010019.
  • Shah A, Niaz A, Ullah N, Rehman A, Akhlaq M, Zakir M, Khan MS. 2013. Comparative study of heavy metals in soil and selected medicinal plants. J Chem. 2013:1–5. doi:10.1155/2013/621265.
  • Shahid M, Arshad M, Kaemmerer M, Pinelli E, Probst A, Baque D, Pradere P, Dumat C. 2012. Long-term field metal extraction by pelargonium: phytoextraction efficiency in relation to plant maturity. Int J Phytoremediation. 14(5):493–505. doi:10.1080/15226514.2011.604689.
  • Sharma P, Dubey RS. 2005. Lead toxicity in plants. Braz J Plant Physiol. 17(1):35–52. doi:10.1590/S1677-04202005000100004.
  • Shim YY, Gui B, Arnison PG, Wang Y, Martin M, Reaney JT. 2014. Flaxseed Linum usitatissimum bioactive compounds and peptide nomenclature: a review. Trends in Food Sci Technol. 38(1):5–20. doi:10.1016/j.tifs.2014.03.011.
  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D. 2010. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol. 101(9):3025–3032. doi:10.1016/j.biortech.2009.12.031.
  • Tandon K, Awasthi HK, Pandey PK, Dwivedi SK. 2021. Problems faced by the linseed farmers during the adoption of recommended linseed production technology in Kanker district of Chhattisgarh. J Pharmacog Phytochem. 10(1):560–562.
  • Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat R. 2007. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere. 68(2):323–329. doi:10.1016/j.chemosphere.2006.12.064.
  • Tiwari S, Lata C. 2018. Heavy metal stress, signalling, and tolerance due to plant-associated microbes: an overview. Front Plant Sci. 9:452. doi:10.3389/fpls.2018.00452.
  • Usman K, Abu-Dieyeh MH, Zouari N, Al-Ghouti MA. 2020. Lead (Pb) bioaccumulation and antioxidative responses in Tetraena qataranse. Sci Rep. 10(1):17070. doi:10.1038/s41598-020-73621-z.
  • Yan L, Chouw N, Jayaraman K. 2014. Flax fibre and its composites – a review. Compos B. 56:296–317. doi:10.1016/j.compositesb.2013.08.014.
  • Yoon J, Cao X, Zhou Q, Ma LQ. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ. 368(2-3):456–464. doi:10.1016/j.scitotenv.2006.01.016.
  • Zainab N, Din BU, Javed MT, Afridi MS, Mukhtar T, Kamran MA, Khan AA, Ali J, Jatoi WN, Hussain Munis MF, et al. 2020. Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiol Biochem. 152:90–99. doi:10.1016/j.plaphy.2020.04.039.
  • Zhang W, Cai Y, Tu C, Ma LQ. 2002. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci Total Environ. 300(1–3):167–177. doi:10.1016/S0048-9697(02)00165-1.
  • Zhao X, Guo Y, Papazoglou EG. 2022. Screening flax, kenaf and hemp varieties for phytoremediation of trace element-contaminated soils. Ind Crops Prod. 185:115121. doi:10.1016/j.indcrop.2022.115121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.