227
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Autochthonous strains of Trichoderma isolated from tannery solid waste improve phytoextraction potential of heavy metals by sunflower

, , &

References

  • Abdelhafez AA, Li J. 2014. Geochemical and statistical evaluation of heavy metal status in the region around Jinxi River, China. Soil Sediment Contam. 23(8):850–868. doi:10.1080/15320383.2014.887651.
  • Adesodun J, Atayese M, Agbaje T, Osadiaye B, Mafe O, Soretire A. 2010. Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Pollut. 207(1–4):195–201. doi:10.1007/s11270-009-0128-3.
  • Adimalla N, Chen J, Qian H. 2020. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: a case study from an urban region of South India. Ecotoxicol Environ Saf. 194:110406. doi:10.1016/j.ecoenv.2020.110406.
  • Adnan M, Islam W, Shabbir A, Khan KA, Ghramh HA, Huang Z, Chen HYH, Lu G-D. 2019. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb Pathog. 129:7–18. doi:10.1016/j.micpath.2019.01.042.
  • Ashraf S, Naveed M, Afzal M, Ashraf S, Rehman K, Hussain A, Zahir ZA. 2018. Bioremediation of tannery effluent by Cr-and salt-tolerant bacterial strains. Environ Monit Assess. 190(12):1–11. doi:10.1007/s10661-018-7098-0.
  • ASTM. 1987. Standard test method for pressure meter testing in soils. Annual book of ASTM standards. Vol. 4. New York (NY).
  • Atta MI, Bokhari TZ, Malik SA, Wahid A, Saeed S, Gulshan AB. 2013. Assessing some emerging effects of hexavalent chromium on leaf physiological performance in sunflower (Helianthus annuus L.). Int J Sci Eng Res. 4:945–949.
  • Azubuike CC, Chikere CB, Okpokwasili GC. 2016. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol. 32(11):1–18. doi:10.1007/s11274-016-2137-x.
  • Babu AG, Shim J, Bang K-S, Shea PJ, Oh B-T. 2014. Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manage. 132:129–134. doi:10.1016/j.jenvman.2013.10.009.
  • Barbosa B, Boléo S, Sidella S, Costa J, Duarte MP, Mendes B, Cosentino SL, Fernando AL. 2015. Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Bioenerg Res. 8(4):1500–1511. doi:10.1007/s12155-015-9688-9.
  • Bareen F, Tahira SA. 2011. Metal accumulation potential of wild plants in tannery effluent contaminated soil of Kasur, Pakistan: field trials for toxic metal cleanup using Suaeda fruticosa. J Hazard Mater. 186(1):443–450. doi:10.1016/j.jhazmat.2010.11.022.
  • Bashir MA, Naveed M, Ahmad Z, Gao B, Mustafa A, Núñez-Delgado A. 2020. Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. J Environ Manage. 259:110051. doi:10.1016/j.jenvman.2019.110051.
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207. doi:10.1007/BF00018060.
  • Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 44(1):276–287. doi:10.1016/0003-2697(71)90370-8.
  • Berti WR, Cunningham SD. 2000. Phytostabilization of metals. In: Raskin I, Ensley BD, editors. Phytoremediation of toxic metals: using plants to clean-up the environment. New York (NY): John Wiley & Sons, Inc. p. 71–88.
  • Bilal S, Khan AL, Shahzad R, Asaf S, Kang SM, Lee IJ, Card SD, Hume DE, Roodi D, McGill CR, et al. 2017. Endophytic Paecilomyces formosus LHL10 augments Glycine max L. adaptation to Ni-contamination through affecting endogenous phytohormones and oxidative stress. Front Plant Sci. 8:870–887.
  • Black CA. 1965. Methods of soil analysis. Black CA, Editor-in-chief, Evans DD, Associate Editors, Dinauer RC, Managing Editor. American Society of Agronomy.
  • Bower CA, Reitemeier RF, Fireman M. 1952. Exchangeable cation analysis of saline and alkali soils. Soil Sci. 73:251–261.
  • Calabrese EJ, Agathokleous E. 2021. Accumulator plants and hormesis. Environ Pollut. 274:116526. doi:10.1016/j.envpol.2021.
  • Calin M, Raut I, Liliana L, Capra L, Gurban AM, Doni M, Jecu L. 2019. Applications of fungal strains with keratin-degrading and plant growth promoting characteristics. Agronomy. 9(9):543. doi:10.3390/agronomy9090543.
  • Cao L, Jiang M, Zeng Z, Du A, Tan H, Liu Y. 2008. Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils. Chemosphere. 71(9):1769–1773. doi:10.1016/j.chemosphere.2008.01.066.
  • Card SD, Hume DE, Roodi D, McGill CR, Millner JP, Johnson RD. 2015. Beneficial endophytic microorganisms of Brassica–a review. Biol Control. 90:102–112. doi:10.1016/j.biocontrol.2015.06.001.
  • Chaturvedi P, Shukla P, Giri BS, Chowdhary P, Chandra R, Gupta P, Pandey A. 2021. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: a review on emerging contaminants. Environ Res. 194:110664. doi:10.1016/j.envres.2020.110664.
  • Chenny S. 1997. Culling dynamical systems in virtual environments. In: Proceedings of 1997 Symposium on Interactive Graphics.
  • Colpaert JV, Van Assche JA. 1992. The effects of cadmium and the cadmium-zinc interaction on the axenic growth of ectomycorrhizal fungi. Plant Soil. 145(2):237–243. doi:10.1007/BF00010352.
  • Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J. 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol. 92:fiw036.
  • Cutright T, Gunda N, Kurt F. 2010. Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil. Int J Phytoremediation. 12(6):562–573. doi:10.1080/15226510903353146.
  • DalCorso G, Fasani E, Manara A, Visioli G, Furini A. 2019. Heavy metal pollutions: state of the art and innovation in phytoremediation. Int J Mol Sci. 20(14):3412. doi:10.3390/ijms20143412.
  • Domsch KH, Gams W, Anderson TH. 1980. Compendium of soil fungi. Vol. 1. London: Academic Press (London) Ltd.
  • Doni F, Zain CRCM, Isahak A, Fathurrahman F, Anhar A, Mohamad WNAW, Yusof WMW, Uphof N. 2017. A simple, efficient, and farmer friendly Trichoderma-based biofertilizer evaluated with the SRI rice management system. Org Agric. 8:1–17.
  • Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M. 2014. Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Saf. 106:164–172. doi:10.1016/j.ecoenv.2014.03.007.
  • Ellis MB. 1971. Dematiaceous hyphomycetes. Kew: Commonwealth Mycological Institute.
  • Ellis MB. 1976. More dematiaceous hyphomycetes. Kew: Commonwealth Mycological Institute.
  • El-Mahdy OM, Mohamed HI, Mogazy AM. 2021. Biosorption effect of Aspergillus niger and Penicillium chrysosporium for Cd-and Pb-contaminated soil and their physiological effects on Vicia faba L. Environ Sci Pollut Res Int. 28(47):67608–67631. doi:10.1007/s11356-021-15382-4.
  • Fan D, Han J, Chen Y, Zhu Y, Li P. 2018. Hormetic effects of Cd on alkaline phosphatase in soils across particle–size fractions in a typical coastal wetland. Sci Total Environ. 613–614:792–797. doi:10.1016/j.scitotenv.2017.09.089.
  • Gadd GM, Sayer GM. 2000. Fungal transformation of metals and metalloids. In: Lovely DR, editor. Environmental microbe-metal interactions. Washington (DC): American Society for Microbiology (ASM) Press. p. 237–256.
  • Ge W, Zamri D, Mineyama H, Valix M. 2011. Bioaccumulation of heavy metals on adapted Aspergillus foetidus. Adsorp Sci Technol. 17(5):901–910. doi:10.1007/s10450-011-9359-x.
  • Ghosh A, Sarkar JP, Das B. 2019. Sustainable energy recovery from municipal solid waste (MSW) using bio-reactor landfills for smart city development. Presented in IEEE International Conference on Sustainable Energy Technologies and Systems (ICSETS), 19 March 2019, Bhubaneswar, India.
  • Gomez KA, Gomez AA. 1984. Statistical procedures for agricultural research. New York (NY): John Wiley & Sons.
  • Gong X, Huang D, Liu Y, Zeng G, Wang R, Wan J, Zhang C, Cheng M, Qin X, Xue W. 2017. Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environ Sci Technol. 51(19):11308–11316. doi:10.1021/acs.est.7b03164.
  • Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Kim H. 2018. Myco-phytoremediation of arsenic-and lead-contaminated soils by Helianthus annuus and wood rot fungi, Trichoderma sp. isolated from decayed wood. Ecotoxicol Environ Saf. 151:279–284. doi:10.1016/j.ecoenv.2018.01.020.
  • Gutfinger T. 1981. Polyphenols in olive oils. J Am Oil Chem Soc. 58(11):966–968. doi:10.1007/BF02659771.
  • Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M. 2021. Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Saf. 211:111887. doi:10.1016/j.ecoenv.2020.111887.
  • Hashmi GJ, Dastageer G, Sajid MS, Ali Z, Malik MF, Liaqat I. 2017. Leather industry and environment: Pakistan scenario. Int J Appl Biol Forensics. 1(2):20–25.
  • Hassan A, Pariatamby A, Ossai IC, Hamid FS. 2020. Bioaugmentation assisted mycoremediation of heavy metal and/metalloid landfill contaminated soil using consortia of filamentous fungi. Biochem Eng J. 157:107550. doi:10.1016/j.bej.2020.107550.
  • Hou S, Zheng N, Tang L, Ji X, Li Y. 2019. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environ Monit Assess. 191(10):1–10. doi:10.1007/s10661-019-7793-5.
  • Hussain A, Shah M, Hamayun M, Qadir M, Iqbal A. 2022. Heavy metal tolerant endophytic fungi Aspergillus welwitschiae improves growth, ceasing metal uptake and strengthening antioxidant system in Glycine max L. Environ Sci Pollut Res Int. 29(11):15501–15515. doi:10.1007/s11356-021-16640-1.
  • Iftikhar S, Saleem M, Ahmad KS, Jaffri SB. 2019. Synergistic mycoflora–natural farming mediated biofertilization and heavy metals decontamination of lithospheric compartment in a sustainable mode via Helianthus annuus. Int J Environ Sci Technol. 16(11):6735–6752. doi:10.1007/s13762-018-02180-8.
  • Iram S, Basri R, Ahmad KS, Jaffri SB. 2019. Mycological assisted phytoremediation enhancement of bioenergy crops Zea mays and Helianthus annuus in heavy metal contaminated lithospheric zone. Soil Sediment Contam Int J. 28(4):411–430.
  • Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K, Pugazhendhi A.,. 2018. Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manage. 217:56–70. doi:10.1016/j.jenvman.2018.03.077.
  • Jaroszuk-Ściseł J, Tyśkiewicz R, Nowak A, Ozimek E, Majewska M, Hanaka A, Tyśkiewicz K, Pawlik A, Janusz G. 2019. Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. Int J Mol Sci. 20(19):4923–4951. doi:10.3390/ijms20194923.
  • Jiang J, Qin C, Shu X, Chen R, Song H, Li Q, Xu H. 2015. Effects of copper on induction of thiol-compounds and antioxidant enzymes by the fruiting body of Oudemansiella radicata. Ecotoxicol Environ Saf. 111:60–65. doi:10.1016/j.ecoenv.2014.09.014.
  • John SV, Gnanamani A, Muralidharan C, Chandrababu NK, Mandal AB. 2011. Recovery and utilization of proteinaceous wastes of leather making: a review. Rev Environ Sci Biotechnol. 10(2):151–163. doi:10.1007/s11157-010-9223-6.
  • Jones JJ. 1984. Plants. In: Williams S, editor. Official methods of analysis of the Association of Official Analytical Chemists. Arlington (VA): Association of Official Analytical Chemists. p. 38–64.
  • Joo JH, Hussein KA. 2012. Heavy metal tolerance of fungi isolated from contaminated soil. Korean J Soil Sci Fert. 45(4):565–571. doi:10.7745/KJSSF.2012.45.4.565.
  • Joshi N, Kumar A, Kadimpati KK, Prasad MK, Sarada B, Murthy CV. 2012. Studies on biosorption of nickel using immobilized fungus, Rhizomucor tauricus. BioResources. 7(4):5059–5073.
  • Kidwai MK, Malik A, Dhull SB, Rose PK, Garg VK. 2022. Bioremediation potential of Trichoderma species for metal(loid)s. In: Bioremediation of toxic metal(loid)s. Boca Raton (FL): CRC Press. p. 137–152.
  • Kumar N, Bauddh K, Kumar S, Dwivedi N, Singh DP, Barman SC. 2013. Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecol Eng. 61:491–495. doi:10.1016/j.ecoleng.2013.10.004.
  • La VH, Lee BR, Islam MT, Park SH, Jung H, Bae DW, Kim TH. 2019. Characterization of salicylic acid-mediated modulation of the drought stress responses: reactive oxygen species, proline, and redox state in Brassica napus. Environ Exp Bot. 157:1–10. doi:10.1016/j.envexpbot.2018.09.013.
  • Laghlimi M, Baghdad B, El Hadi H, Bouabdli A. 2015. Phytoremediation mechanisms of heavy metal contaminated soils: a review. OJE. 05(08):375–388. doi:10.4236/oje.2015.58031.
  • Lebeau T, Braud A, Jézéquel K. 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut. 153(3):497–522. doi:10.1016/j.envpol.2007.09.015.
  • Lorito M, Woo SL, Harman GE, Monte E. 2010. Translational research on Trichoderma: from ‘omics to the field’. Annu Rev Phytopathol. 48:395–417. doi:10.1146/annurev-phyto-073009-114314.
  • Lu RR, Hu ZH, Zhang QL, Li YQ, Lin M, Wang XL, Wu XN, Yang JT, Zhang LQ, Jing YX, et al. 2020. The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea. Ecotoxicol Environ Saf. 203:1–9.
  • Maldaner J, Steffen GPK, Missio EL, Saldanha CW, de Morais RM, Nicoloso FT. 2021. Tolerance of Trichoderma isolates to increasing concentrations of heavy metals. Int J Environ Stud. 78(2):185–197. doi:10.1080/00207233.2020.1778290.
  • Mastouri F, Björkman T, Harman GE. 2010. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology. 100(11):1213–1221. doi:10.1094/PHYTO-03-10-0091.
  • Mazrou YS, Neha B, Kandoliya UK, Srutiben G, Hardik L, Gaber A, Awad MF, Hassan MM. 2020. Selection and characterization of novel zinc-tolerant Trichoderma strains obtained by protoplast fusion. JEB. 41(4):718–726. doi:10.22438/jeb/41/4/MRN-1328.
  • Migahed F, Fawzy G, Elrazak AA. 2015. Isolation of heavy metal tolerant fungi from industrial discharge. J Chem Biol. 6:18–35.
  • Mishra A, Malik A. 2014. Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Bioresour Technol. 171:217–226. doi:10.1016/j.biortech.2014.08.047.
  • Müller FM, Werner KE, Kasai M, Francesconi A, Chanock SJ, Walsh TJ. 1998. Rapid extraction of genomic DNA from medically important yeasts and filamentous fungi by high-speed cell disruption. J Clin Microbiol. 36(6):1625–1629. doi:10.1128/JCM.36.6.1625-1629.1998.
  • Muñoz AJ, Ruiz E, Abriouel H, Gálvez A, Ezzouhri L, Lairini K, Espínola F. 2012. Heavy metal tolerance of microorganisms isolated from wastewaters: identification and evaluation of its potential for biosorption. Chem Eng J. 210:325–332. doi:10.1016/j.cej.2012.09.007.
  • Pehlivan N, Gedik K, Eltem R, Terzi E. 2021. Dynamic interactions of Trichoderma harzianum TS 143 from an old mining site in Turkey for potent metal(oid)s phytoextraction and bioenergy crop farming. J Hazard Mater. 403:123609. doi:10.1016/j.jhazmat.2020.123609.
  • Pequerul A, Perez C, Madero P, Val J, Monge E. 1993. A rapid wet digestion method for plant analysis. In: Optimization of plant nutrition. Dordrecht: Springer. p. 3–6.
  • Piotrowska-Seget Z, Cycoń M, Kozdroj J. 2005. Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl Soil Ecol. 28(3):237–246. doi:10.1016/j.apsoil.2004.08.001.
  • Polle A, Otter T, Seifert F. 1994. Apoplastic peroxidases and lignification in needles of Norway (Picea abies L.). Plant Physiol. 106(1):53–60. doi:10.1104/pp.106.1.53.
  • Prajapati D, Bhatt A, Gupte A, Gupte S. 2021. Fungi: a sustainable and versatile tool for transformation, detoxification, and degradation of environmental pollutants. In: Progress in mycology. Singapore: Springer. p. 593–619.
  • Prapagdee B, Chanprasert M, Mongkolsuk S. 2015. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Biol Control. 90:102–112.
  • PTA. 2021. Pakistan Tanners Association (PTA) [accessed 2022 Feb 4]. https://www.pakistantanners.org/industrial_statistics.html.
  • Qi W, Zhao L. 2013. Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. J Basic Microbiol. 53(4):355–364. doi:10.1002/jobm.201200031.
  • Rafique MI, Usman AR, Ahmad M, Al-Wabel MI. 2021. Immobilization and mitigation of chromium toxicity in aqueous solutions and tannery waste-contaminated soil using biochar and polymer-modified biochar. Chemosphere. 266:129198. doi:10.1016/j.chemosphere.2020.129198.
  • Rawat L, Singh Y, Shukla N, Kumar J. 2013. Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f. sp. ciceri in chickpea (Cicer arietinum L.) under salt stress conditions. Arch Phytopathol Plant Prot. 46(12):1442–1467. doi:10.1080/03235408.2013.769316.
  • Rizwan M, Ali S, Qayyum MF, Ok YS, Zia-Ur-Rehman M, Abbas Z, Hannan F. 2017. Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ Geochem Health. 39(2):259–277. doi:10.1007/s10653-016-9826-0.
  • Rose PK, Devi R. 2018. Heavy metal tolerance and adaptability assessment of indigenous filamentous fungi isolated from industrial wastewater and sludge samples. Beni-Suef Univ J Basic Appl. 7(4):688–694.
  • Seelay HW, Van Demark PJ. 1981. Microbes in action. A laboratory manual of microbiology. 3rd ed. New York (NY): W.H. Freeman and Company. p. 350.
  • Senthil R, Prabakar K, Rajendran L, Karthikeyan G. 2011. Efficacy of different biological control agents against major postharvest pathogens of grapes under room temperature storage conditions. Phytopathol Mediterr. 50(1):55–64.
  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M. 2013. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem. 60(100):182–194. doi:10.1016/j.soilbio.2013.01.012.
  • Shafiq M, Shaukat T, Nazir A, Bareen FE. 2017. Modeling of Cr contamination in the agricultural lands of three villages near the leather industry in Kasur, Pakistan, using statistical and GIS techniques. Environ Monit Assess. 189(8):1–18. doi:10.1007/s10661-017-6126-9.
  • Sinha AK. 1972. Colorimetric assay of catalase. Anal Biochem. 47(2):389–394. doi:10.1016/0003-2697(72)90132-7.
  • Sivarajasekar N, Mohanraj N, Sivamani S, Prakash Maran J, Ganesh Moorthy I, Balasubramani K. 2018. Statistical optimization studies on adsorption of ibuprofen onto Albizia lebbeck seed pods activated carbon prepared using microwave irradiation. Mater Today Proc. 5(2):7264–7274. doi:10.1016/j.matpr.2017.11.394.
  • Smith SR. 1996. Agricultural recycling of sewage sludge and the environment. Wallingford (CT): CAB International. p. 382.
  • Sun F, Xu Z, Fan L. 2021. Response of heavy metal and antibiotic resistance genes and related microorganisms to different heavy metals in activated sludge. J Environ Manage. 300:113754. doi:10.1016/j.jenvman.2021.113754.
  • Sun H, Meng M, Wu L, Zheng X, Zhu Z, Dai S. 2020. Function and mechanism of polysaccharide on enhancing tolerance of Trichoderma asperellum under Pb2+ stress. Int J Biol Macromol. 151:509–518. doi:10.1016/j.ijbiomac.2020.02.207.
  • Tripathi M, Upadhyay SK, Kaur M, Kaur K. 2018. Toxicity concerns of hexavalent chromium from tannery waste. J Biotechnol Bioeng. 2(2):40–44.
  • US EPA. 2010. Toxic Release Inventory (TRI). TRI Explorer; releases: chemical report 2009 – cadmium and cadmium compounds. Minnesota, USA.
  • Vajpai S, Taylor PE, Adholeya A, Leigh Ackland M. 2020. Chromium tolerance and accumulation in Aspergillus flavus isolated from tannery effluent. J Basic Microbiol. 60(1):58–71. doi:10.1002/jobm.201900389.
  • Van Loon JC, Lichwa J, Ruttan D, Kinrade J. 1973. The determination of heavy metals in domestic sewage treatment plant wastes. Water Air Soil Pollut. 2(4):473–482. doi:10.1007/BF00585091.
  • Vig K, Megharaj M, Sethunathan N, Naidu R. 2003. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv Environ Res. 8(1):121–135. doi:10.1016/S1093-0191(02)00135-1.
  • Waksman SA. 1922. A method of counting the number of fungi in soil. J Bacteriol. 7(3):339–341. doi:10.1128/jb.7.3.339-341.1922.
  • Wang JL, Li T, Liu GY, Smith JM, Zhao ZW. 2016. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep. 6:22028. doi:10.1038/srep22028.
  • White C, Sayer J, Gadd G. 1997. Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev. 20(3–4):503–516. doi:10.1111/j.1574-6976.1997.tb00333.x.
  • WHO. 1996. World Health Organization report. Geneva: WHO.
  • Xie Y, Bu H, Feng Q, Wassie M, Amee M, Jiang Y, Bi Y, Longxing H, Chen L. 2021. Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of Bermuda grass. Environ Res. 200:111730.
  • Yoon J, Cao X, Zhou Q, Ma LQ. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ. 368(2–3):456–464. doi:10.1016/j.scitotenv.2006.01.016.
  • Zhang X, Xinxin L, Yang H, Cui Z. 2018. Biochemical mechanism of phytoremediation process of lead and cadmium pollution with Mucor circinelloides and Trichoderma asperellum. Ecotoxicol Environ Saf. 157:21–28. doi:10.1016/j.ecoenv.2018.03.047.
  • Zhang XZ. 1992. The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. In: Zhang XZ, editor. Research methodology of crop physiology. Beijing: Agriculture Press. p. 208–211.
  • Zope V, Jadhav H, Sayyed R. 2019. Neem cake carrier prolongs shelf life of biocontrol fungus Trichoderma viridae. Indian J Exp Biol. 57(5):372–375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.