203
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effectiveness of combined tools: adsorption, bioaugmentation and phytoremediation for pesticides removal from wastewater

ORCID Icon, , , , , & show all

References

  • Abdelhafez AA, Metwalley SM, Abbas HH. 2020. Irrigation: water resources, types and common problems in Egypt. In: Omran E-SE, Negm AM, editors. Technological and modern irrigation environment in Egypt. Cham: Springer. p. 15–34.
  • Angelucci DM, Piscitelli D, Tomei MC. 2019. Pentachlorophenol biodegradation in two-phase bioreactors operated with absorptive polymers: Box-Behnken experimental design and optimization by response surface methodology. Proc Saf and Env Prot. 131:105–115. doi:10.1016/j.psep.2019.09.005.
  • Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HM. 2019. Emerging contaminants of high concern and their enzyme-assisted biodegradation–a review. Environ Int. 124:336–353. doi:10.1016/j.envint.2019.01.011.
  • Bouhamed F, Elouear Z, Bouzid J. 2012. Adsorptive removal of copper (II) from aqueous solutions on activated carbon prepared from Tunisian date stones: Equilibrium, kinetics and thermodynamics. J of the Taiw Inst of Chem Eng. 43(5):741–749. doi:10.1016/j.jtice.2012.02.011..
  • Chandra R, Castillo-Zacarias C, Delgado P, Parra-Saldívar R. 2018. A biorefinery approach for dairy wastewater treatment and product recovery towards establishing a biorefinery complexity index. J Clean Prod. 183:1184–1196. doi:10.1016/j.jclepro.2018.02.124.
  • Chaouch A, Bouzenad K, Ramdani M. 2014. Enhanced multivariate process monitoring for biological wastewater treatment plants. Inter J Electr Engin. 2:131–137. doi:10.3390/a10020049.
  • Chen M, Shih K, Hu M, Li F, Liu C, Wu W, Tong H. 2012. Biostimulation of indigenous microbial communities for anaerobic transformation of pentachlorophenol in paddy soils of southern China. J Agric Food Chem. 60(12):2967–2975. doi:10.1021/jf204134w.
  • Chen W, Feng P, Ding H, Lin H, Chou KC. 2015. Benchmark data for identifying N (6) methyl adenosine sites in the Saccharomyces cerevisiae genome. Data Brief. 5:376–378. doi:10.1016/j.dib.2015.09.008.
  • Cheng Y, He KB, Zheng M, Duan FK, Du ZY, Ma YL, Tam JH, Yang FM, Liu JM, Zhang XL, et al. 2011. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. Atm Chem Phys. 11(22):11497–11510. doi:10.5194/acp-11-11497-2011.
  • Choppala G, Bolan N, Bibi S, Iqbal M, Rengel Z, Kunhikrishnan A, Ashwath N, Ok, YS, Saifullah  . 2014. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci. 33(5):374–391., doi:10.1080/07352689.2014.903747.
  • Chowdhury A, Kumari S, Khan AA, Chandra MR, Hussain S. 2021. Activated carbon loaded with Ni-Co-S nanoparticle for superior adsorption capacity of antibiotics and dye from wastewater: Kinetics and isotherms. Colloids Surf A. 611:125868. doi:10.1016/j.colsurfa.2020.12586.
  • Cloirec P, Brasquet C, Subrenat E. 1997. Adsorption onto fibrous activated carbon: applications to water treatment. Energy Fuels. 11(2):331–336. doi:10.1021/ef9601430.
  • Demers E, Kõiv-Vainik M, Yavari S, Mench M, Marchand L, Vincent J, Frédette C, Comeau Y, Brisson J. 2020. Macrophyte potential to treat leachate contaminated with wood preservatives: plant tolerance and bioaccumulation capacity. Pla. Plants. 9(12):1774. doi:10.3390/plants9121774.
  • Diaz-Flores PE, Leyva-Ramos R, Guerrero-Coronado RM, Mendoza-Barron J. 2006. Adsorption of pentachlorophenol from aqueous solution onto activated carbon fiber. Ind Eng Chem Res. 45(1):330–336. doi:10.1021/ie050507o.
  • Elgallal M, Fletcher L, Evans B. 2016. Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review. Agric Wat Manag. 177:419–431. doi:10.1016/j.agwat.2016.08.027.
  • Fahmida K, Fakhruddin ANM. 2012. Recent advances in the development of a biosensor for phenol. Rev Environ Sci Biotechnol. 11(3):261–274. doi:10.1007/s11157-012-9268-9.
  • Ferro-Novick S, Jahn R. 1994. Vesicle fusion from yeast to man. Nature. 370(6486):191–193. doi:10.1038/370191a0.
  • Galązka A, Grządziel J, Galązka R, Ukalska-Jaruga A, Strzelecka J, Smreczak B. 2018. Genetic and functional diversity of bacterial microbiome in soils with long term impacts of petroleum hydrocarbons. Front Microb. 9:1923. doi:10.3389/fmicb.2018.01923.
  • Gharbi M, Peyre P, Gorny C, Carin M, Morville S, Le Masson P, Carron D, Fabbro R. 2013. Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti–6Al–4V alloy. J Mat Proc Tech. 213(5):791–800. doi:10.1016/j.jmatprotec.2012.11.015.
  • Grandclément C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N, Roche N, Doumenq P. 2017. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Res. 111:297–317. doi:10.1016/j.watres.2017.01.005.
  • Grzmil B, Wronkowski J. 2006. Removal of phosphates and fluorides from industrial wastewater. Desalinate. 189(1–3):261–268. doi:10.1016/j.desal.2005.07.008.
  • Grzmil B, Wronkowski J. 2006. Removal of phosphates and fluorides from industrial wastewater. Desal. 189(1–3):261–268. doi:10.1016/j.desal.2005.07.008.
  • Hamdani J, Moes AJ, Amighi K. 2002. Development and evaluation of prolonged release pellets obtained by the melt pelletization process. Inter J Pharm. 245(1-2):167–177. doi:10.1016/s0378-5173(02)00348-4.
  • Hassen W, Neifar M, Cherif H, Mahjoubi M, Souissi Y, Raddadi N, … Cherif A. 2018. Assessment of genetic diversity and bioremediation potential of pseudomonads isolated from pesticide-contaminated artichoke farm soils. 3 Biot. 8(6):1–14. doi:10.1007/s13205-018-1256-5.
  • Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C. 2019. Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics. 11(2):255–277. doi:10.1039/c8mt00247a.
  • Karn SK, Chakrabarty SK, Reddy MS. 2010a. Pentachlorophenol degradation by Pseudomonas stutzeri CL7 in the secondary sludge of pulp and paper mill. J Env Sci. 22(10):1608–1612. doi:10.1016/S1001-0742(09)60296-5.
  • Karn SK, Chakrabarty SK, Reddy MS. 2010b. Characterization of pentachlorophenol degrading Bacillus strains from secondary pulp-and-paper-industry sludge. Inter Biodet & Biod. 64(7):609–613. doi:10.1016/j.ibiod.2010.05.017.
  • Khessairi A, Fhoula I, Jaouani A, Turki Y, Cherif A, Boudabous A, Hassen A, Ouzari H. 2014. Pentachlorophenol degradation by Janibacter sp., a new actinobacterium isolated from saline sediment of arid land. BioMed Res Inter. doi:10.1155/2014/296472.
  • Lichtenthaler HK. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148:350–382. doi:10.1016/0076-6879(87)48036-1.
  • Maazou R, Rabiou H, Issiaka Y, Abdou L, Saidou SI, Mahamane A. 2017. Influence de l’occupation des terres sur la dynamique des communautés végétales en zone Sahélienne: cas de la commune rurale de Dantchandou (Niger). Int J Bio Chem Sci. 11(1):79–92. doi:10.4314/ijbcs.v11i1.7.
  • Mallick N, Mohn FH. 2003. Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus. Ecot and Env Saf. 55(1):64–69. doi:10.1016/S0147-6513(02)00122-7.
  • Manios T, Stentiford EI, Millner P. 2003a. Removal of heavy metals from a metaliferous water solution by Typha latifolia plants and sewage sludge compost. Chem. 53(5):487–494. doi:10.1016/S0045-6535(03)00537-X.
  • Manios T, Stentiford EI, Millner PA. 2003b. The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecol Eng. 20(1):65–74. doi:10.1016/S0925-8574(03)00004-1.
  • Materac M, Wyrwicka A, Sobiecka E. 2015. Phytoremediation techniques of wastewater treatment. Env Biotech. 11(1):10–13. doi:10.14799/ebms249.
  • Mehri S, Karami HV, Hassani FV, Hosseinzadeh H. 2014. Chrysin reduced acrylamide-induced neurotoxicity in both in vitro and in vivo assessments. Iran Biomed J. 18(2):101–106. doi:10.091/ibj.1291.2013.
  • Miller EK, Dyer WE. 2002. Phytoremediation of pentachlorophenol in the crested wheatgrass (Agropyron cristatum desertorum) rhizosphere. Int J Phytorem. 4(3):223–238. doi:10.1080/15226510208500084.
  • Mills J, Bonner A, Francis K. 2006. The development of constructivist grounded theory. Inter J Qualit Meth. 5(1):25–35. doi:10.1177/160940690600500.
  • Muhama MH, Abdullah SRS, Hasan HA, Hatika SN, Bakar A. 2020. Multimedia-sequencing batch biofilm reactor in treating recycled paper mill effluent containing high levels of pentachlorophenol: long-term performance, mechanism and kinetic studies. J Water Proc Eng. 37:101522. doi:10.1016/j.jwpe.2020.101522.
  • Murialdo SE, Fenoglio R, Haure PM, Gonzalez JF. 2004. Degradation of phenol and chlorophenols by mixed and pure culture. Water SA. 29(4):457–463. doi:10.4314/wsa.v29i4.5053.
  • Nalaya P, Wahid SA, Mohd HE. 2020. C of Empty Fruit Bunch Biochar Pyrolyzed at Different Temperatures with Respect to Activated Carbon and their Sorption Capacities for Pentachlorophenol. J Wat Envir Tech. 18(5):314–326. doi:10.2965/jwet.20-013.
  • ONAS 2019. Activity Report of the National Sanitation Utility, Tunisia. http://www.onas.nat.tn/En/evennement.php?code=49&page=5&type=5
  • Pignatello JJ, Sun Y. 1995. Complete oxidation of metolachlor and methyl parathion in water by the photoassisted Fenton reaction. Water Res. 29(8):1837–1844. doi:10.1016/0043-1354(94)00352-8.
  • Prado DE. 2000. Seasonally dry forests of tropical South America: from forgotten ecosystems to a new phytogeographic unit. Edinb J Bot. 357(3):437–461.
  • Prahap MG, Zainulibad C, Hemanth Ram S, Vivek P, Rajasekaran M, Sudarsan JS, Nithiyanantham S. 2019. Effectiveness of phytoremediation to the removal of heavy metals using absorbents: wastewater treatment. Intern J Ener Wat Res. 3(3):263–267. doi:10.1007/s42108-019-00029-5.
  • Qureshi AS. 2020. Challenges and prospects of using treated wastewater to manage water scarcity crises in the Gulf Cooperation Council (GCC) countries. Wat. 12(7):1971. doi:10.3390/w12071971.
  • Rao MA, Di Rauso Simeone G, Scelza R, Conte P. 2017. Biochar based remediation of water and soil contaminated by phenanthrene and pentachlorophenol. Chem. 186:193–201. doi:10.1016/j.chemosphere.2017.07.125.
  • Ren HY, Wei ZJ, Wang Y, Deng YP, Li MY, Wang B. 2020. Effects of biochar properties on the bioremediation of the petroleum-contaminated soil from a shale-gas field. Environ Sci Pollut Res Int. 27(29):36427–36438. doi:10.1007/s11356-020-09715-y.
  • Roccotelli A, Araniti F, Tursi A, Di Rauso Simeone G, Rao MA, Lania I, Chidichimo G, Abenavoli MR, Gelsomino A. 2020. Organic matter characterization and phytotoxic potential assessment of a solid anaerobic digestate following chemical stabilization by an iron-based fenton reaction. J Agric Food Chem. 68(35):9461–9474. doi:10.3390/app11052267.
  • Rouvière F, Buleté A, Cren-Olivé C, Arnaudguilhem C. 2012. Multiresidue analysis of aromatic organochlorines in soil by gas chromatography-mass spectrometry and QuEChERS extraction based on water/dichloromethane partitioning. Comparison with accelerated solvent extraction. Talanta. 93:336–344. doi:10.1016/j.talanta.2012.02.048.
  • Saeed T, Sun G. 2012. A review on nitrogen and organic removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. J Environ Manage. 112:429–448. doi:10.1016/j.jenvman.2012.08.011.
  • Samudro H, Mangkoedihardjo S. 2021. Indoor phytoremediation using decorative plants: an overview of application principles. JP. 13(6):28–32. doi:10.25081/jp.2021.v13.6866.
  • Scheiner D. 1974. A modified version of the sodium salicylate method for analysis of wastewater nitrates. Water Res. 8(10):835–840. doi:10.1016/0043-1354(74)90030-X.
  • Shroff RA, Lockington RA, Kelly JM. 1996. Analysis of mutations in the creA gene involved in carbon catabolite repression in Aspergillus nidulans. Can J Microb. 42(9):950–959. doi:10.1139/m96-122.
  • Siragi DB, Maazou IH, Hima MM, Malam A, Zanguina A, Ibrahim N. 2018. Elimination du chrome par du charbon actif élaboré et caractérisé à partir de la coque du noyau de Balanites Aegyptiaca. Int J Bio Chem Sci. 11(6):3050–3065. doi:10.4314/ijbcs.v11i6.39.
  • Standard Methods of Water and Wastewater. 1999. Copyright 1999 by American Public Health Association American Water Works Association, Water Environment Federation.
  • Sundberg IM, Sim SC, Gomez A, Rodriguez-Antona C. 2007. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther. 116(3):496–526. doi:10.1016/j.pharmthera.2007.09.004.
  • Susarla S, Medina VF, McCutcheon SC. 2002. Phytoremediation: an ecological solution to organic chemical contamination. Ecolog Engine. 18(5):647–658. doi:10.1016/S0925-8574(02)00026-5.
  • van Reeuwijk C. 2002. Enigma code breaking using a field programmable gate array. Delft University of Technology Parallel and Distributed Systems, Report Series PDS-2002-001.
  • Viana DG, Egreja Filho FB, Pires FR, Soares MB, Ferreira AD, Bonomo R, Martins LF. 2021. In situ barium phytoremediation in flooded soil using Typha domingensis under different planting densities. Ecotoxicol Environ Saf. 210:111890. doi:10.1016/j.ecoenv.2021.111890.
  • Villegas J, Fortin JA. 2001. Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NH4+ as nitrogen source. Can J Bot. 79(8):865–870. doi:10.1139/b01-069.
  • Vymazal J. 2011. Constructed wetlands for wastewater treatment: five decades of experience. Environ Sci Technol. 45(1):61–69. doi:10.1021/es101403q.
  • Wahab Al-Baldawi IA, Abdullah SRS, Suja F, Anuar N, Idris M. 2015. Phytoremediation of contaminated ground water using Typha angustifolia. Wat Pract & Techn. 10(3):616–624. doi:10.2166/wpt.2015.072.
  • Wang Y, Cai Z, Sheng S, Pan F, Chen F, Fu J. 2020. Comprehensive evaluation of substrate materials for contaminants removal in constructed Wetlands. Sci Total Environ. 701:134736. doi:10.1016/j.scitotenv.2019.134736.
  • Werheni AR, Hidri Y, Souid F, Di Rauso Simeone G, Hajjaji F, Moussa M, Hassen A, Eturki S. 2023. Improvement of degraded agricultural soil in an arid zone following short-and long-term treated municipal wastewater application: a case study of Gabes perimeter. Tunisia. Appl Soil Ecol. 182:104685. doi:10.1016/j.apsoil.2022.104685.
  • Werheni AR, Hassen W, Hidri Y, Simeone, GDR, Hassen A 2022. Macrophyte and indigenous bacterial co-remediation process for pentachlorophenol removal from wastewater. Int J Phytorem. 227:1–12. doi:10.1080/15226514.2021.1933897.
  • Werheni AR, Simeone GDR, Hassen W, Sadfi N, Hidri Y, Hassen A. 2022. Aspergillus sydowii and Typha angustifolia as useful tools for combined bio-processes of PCP removal in wastewater. Int J Environ Sci Technol. 19:11487–11500.
  • Werheni AR, Di Rauso Simeone G, Hidri Y, Abassi MS, Mehri I, Costa S, Hassen A, Rao MA. 2022. Combined bioaugmentation and biostimulation techniques in bioremediation of pentachlorophenol contaminated forest soil. Chemos. 290:133359. doi:10.1016/j.chemosphere.2021.133359.
  • Werheni AR, Hidri Y, Hassen W, Mehri I, Khlifi N, Hassen A. 2021. Surfactant efficiency on pentachlorophenol-contaminated wastewater enhanced by Pseudomonas putida AJ 785569. Arch Microbiol. 203(8):5141–5152. doi:10.1007/s00203-021-02486-1.
  • Werheni AR, Simeone GDR, Hassen W, Ibrahim C, Ammar RB, Hassen A. 2021. Bacterial consortium biotransformation of pentachlorophenol contaminated wastewater. Arch Microbiol. 203(10):6231–6243.
  • Werheni AR, Mehri I, Badi S, Hassen W, Hassen A. 2017. Pentachlorophenol degradation by P. fluorescens. Water Qual Res J Can. 52(2):99–108. doi:10.2166/wqrj.2017.003.
  • Werheni AR, Mokni TS, Mehri I, Badi S, Hassen A. 2016. Pentachlorophenol biodegradation by Citrobacter freundii isolated from Forest contaminated soil. Water Air Soil Pollut. 227:227–367. doi:10.2166/wqrj.2017.003.
  • Xu J, Li C, Yang F, Dong Z, Zhang J, Zhao Y, Qi P, Hu Z. 2011. Typha angustifolia stress tolerance to wastewater with different levels of chemical oxygen demand. Desalination. 280(1-3):58–62. doi:10.1016/j.desal.2011.06.050.
  • Yadav M, Louvet C, Davini D, Gardner JM, Martinez-Llordella M, Bailey-Bucktrout S, Anthony BA, Sverdrup FM, Head R, Kuster DJ, et al. 2012. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med. 209(10):1713–1722. doi:10.1084/jem.20120822.
  • Yang B, Chen A. 2016. Effects of pentachlorophenol on the bacterial denitrification process. Chem Speciat Bioavail. 28(1-4):163–169. doi:10.1080/09542299.2016.1212675.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.