186
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Phytoremediation of PAH compounds by microbial communities in sodic soil

ORCID Icon, , , & ORCID Icon

References

  • Aitken MD, Long TC. 2004. Biotransformation, biodegradation, and bioremediation of polycyclic aromatic hydrocarbons. In: Singh A, Ward OP, editors. Biodegradation and bioremediation. Vol. 2. Berlin Heidelberg: Springer; p. 83–124. doi:10.1007/978-3-662-06066-7_5.
  • Amann RI, Ludwig W, Schleifer KH. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 59(1):143–169. doi:10.1128/mr.59.1.143-169.1995.
  • Ben Ayed H, Jemil N, Maalej H, Bayoudh A, Hmidet N, Nasri M. 2015. Enhancement of solubilization and biodegradation of diesel oil by biosurfactant from Bacillus amyloliquefaciens An6. Int Biodeterior Biodegrad. 99:8–14. doi:10.1016/j.ibiod.2014.12.009.
  • Bence AE, Kvenvolden KA, Kennicutt MC. 1996. Organic geochemistry applied to environmental assessments of Prince William Sound, Alaska, after the Exxon Valdez oil spill—a review. Org Geochem. 24(1):7–42. doi:10.1016/0146-6380(96)00010-1.
  • Bezza FA, Nkhalambayausi Chirwa EM. 2016. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere. 144:635–644. doi:10.1016/j.chemosphere.2015.08.027.
  • Binet P, Portal J, Leyval C. 2000. Fate of polycyclic aromatic hydrocarbons (PAH) in the rhizosphere and mycorrhizosphere of ryegrass. Plant and Soil. 227(1/2):207–213. doi:10.1023/A:1026587418611.
  • Cunliffe M, Kertesz MA. 2006. Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils. Environ Pollut. 144(1):228–237. doi:10.1016/j.envpol.2005.12.026.
  • Gawronski A, Dumontier M. 2011. MoSuMo: a semantic web service to generate electrostatic potentials across solvent excluded protein surfaces and binding pockets. Comput Graph. 35(4):823–830. doi:10.1016/j.cag.2011.03.039.
  • Hesham AE-L, Wang Z, Zhang Y, Zhang J, Lv W, Yang M. 2006. Isolation and identification of a yeast strain capable of degrading four and five ring aromatic hydrocarbons. Ann Microbiol. 56(2):109–112. doi:10.1007/BF03174990.
  • Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO. 2008. Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol. 99(7):2637–2643. doi:10.1016/j.biortech.2007.04.047.
  • Kanaly RA, Harayama S. 2010. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria: HMW PAH biodegradation by bacteria. Microb Biotechnol. 3(2):136–164. doi:10.1111/j.1751-7915.2009.00130.x.
  • Keith L, Telliard W. 1979. ES&T special report: priority pollutants: I-a perspective view. Environ Sci Technol. 13(4):416–423. doi:10.1021/es60152a601.
  • Kennedy TA, Naeem S, Howe KM, Knops JMH, Tilman D, Reich P. 2002. Biodiversity as a barrier to ecological invasion. Nature. 417(6889):636–638. doi:10.1038/nature00776.
  • Khan S, Afzal M, Iqbal S, Khan QM. 2013. Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere. 90(4):1317–1332. doi:10.1016/j.chemosphere.2012.09.045.
  • Liste H-H, Alexander M. 2000. Plant-promoted pyrene degradation in soil. Chemosphere. 40(1):7–10. doi:10.1016/S0045-6535(99)00216-7.
  • Miya RK, Firestone MK. 2001. Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J Environ Qual. 30(6):1911–1918. doi:10.2134/jeq2001.1911.
  • Mueller KE, Shann JR. 2006. PAH dissipation in spiked soil: impacts of bioavailability, microbial activity, and trees. Chemosphere. 64(6):1006–1014. doi:10.1016/j.chemosphere.2005.12.051.
  • Panchal S, Jaryal R, Urana R, Bishnoi MB, Singh N. 2023. Optimization of physicochemical conditions for the phenanthrene degrading consortium NS-PAH-2015-PNP-5. Polycyclic Aromat Compd. 43(1):933–944. doi:10.1080/10406638.2021.2021250.
  • Panchal S, Singh N, Ghosh A, Koti P. 2022. Elucidation of molecular diversity and functional characterization of phenanthrene degrading consortium NS-PAH-2015-PNP-5. Biorem J. (1):1–12. doi:10.1080/10889868.2022.2059439.
  • Phillips L, Greer C, Germida J. 2006. Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biol Biochem. 38(9):2823–2833. doi:10.1016/j.soilbio.2006.04.038.
  • Reilley KA, Banks MK, Schwab AP. 1996. Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J environ Qual. 25(2):212–219. doi:10.2134/jeq1996.00472425002500020002x.
  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. Isme J. 1(4):283–290. doi:10.1038/ismej.2007.53.
  • Sharma D, Ansari MJ, Al-Ghamdi A, Adgaba N, Khan KA, Pruthi V, Al-Waili N. 2015. Biosurfactant production by Pseudomonas aeruginosa DSVP20 isolated from petroleum hydrocarbon-contaminated soil and its physicochemical characterization. Environ Sci Pollut Res Int. 22(22):17636–17643. doi:10.1007/s11356-015-4937-1.
  • Simarro R, González N, Bautista LF, Sanz R, Molina MC. 2011. Optimisation of key abiotic factors of PAH (naphthalene, phenanthrene and anthracene) biodegradation process by a bacterial consortium. Water Air Soil Pollut. 217(1–4):365–374. doi:10.1007/s11270-010-0593-8.
  • Urana R, Singh N, Sharma P. 2019. Effects of PGPR on growth and photosynthetic pigment of Trigonella foenum-graceum and Brassica juncea in PAH-contaminated soil. SN Appl Sci. 1(7):761. doi:10.1007/s42452-019-0780-1.
  • Viñas M, Grifoll M, Sabaté J, Solanas AM. 2002. Biodegradation of a crude oil by three microbial consortia of different origins and metabolic capabilities. J Ind Microbiol Biotechnol. 28(5):252–260. doi:10.1038/sj.jim.7000236.
  • Viñas M, Sabaté J, Espuny MJ, Solanas AM. 2005. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol. 71(11):7008–7018. doi:10.1128/AEM.71.11.7008-7018.2005.
  • Xia W, Du Z, Cui Q, Dong H, Wang F, He P, Tang Y. 2014. Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons. J Hazard Mater. 276:489–498. doi:10.1016/j.jhazmat.2014.05.062.
  • Zhang BY, Zheng JS, Sharp RG. 2010. Phytoremediation in engineered wetlands: mechanisms and applications. Procedia Environ Sci. 2:1315–1325. doi:10.1016/j.proenv.2010.10.142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.