306
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Composted sewage sludge utilization in phytostabilization of heavy metals contaminated soils

ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Afegbua SL, Batty LC. 2018. Effect of single and mixed polycyclic aromatic hydrocarbon contamination on plant biomass yield and PAH dissipation during phytoremediation. Environ Sci Pollut Res Int. 25(19):18596–18603. doi:10.1007/s11356-018-1987-1.
  • Ahmad I, Malik SA, Saeed S, Rehman A, Munir TM. 2022. Phytoremediating a Wastewater-Irrigated Soil Contaminatedwith Toxic Metals: comparing the Efficacies of Different Crops. Soil Syst. 6(4):77. doi:10.3390/soilsystems6040077.
  • Alvarenga P, Gonçalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC. 2009. Organic residues as immobilizing agents in aided phytostabilization:(I) Effects on soil chemical characteristics. Chemosphere. 74(10):1292–1300. doi:10.1016/j.chemosphere.2008.11.063.
  • Anton A, Barna S. 2008. Investigation of the effect of potential chemical stabilizers on reducing the mobility of toxic metals in a laboratory soil incubation model experiment (Potenciális kémiai stabilizálószerek toxikus fémek mobilitását csökkentő hatásának vizsgálata laboratóriumi talajinkubációs modellkísérletben). In: Simon L. editor. Soil Conservation. Nyíregyháza: Bessenyei György Book Publisher. p. 187–194. ISBN: 978-963-9909-03-8.
  • Antosiewicz DM, Escudĕ-Duran C, Wierzbowska E, Skłodowska A. 2008. Indigenous plant species with potential for the phytoremediation of arsenic and metal contaminated soil. Water Air Soil Pollut. 193(1-4):197–210. doi:10.1007/s11270-008-9683-2.
  • Arienzo M, Adamo P, Cozzolino V. 2004. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Sci Total Environ. 319(1–3):13–25. doi:10.1016/S0048-9697(03)00435-2.
  • Babu SMOF, Hossain MB, Rahman MS, Rahman M, Ahmed ASA, Hasan MM, Rakib A, Emran TB, Xiao J, Simal-Gandara J. 2021. Phytoremediation of Toxic Metals: a Sustainable Green Solution for Clean Environment. Applied Sciences. 11(21):10348. doi:10.3390/app112110348.
  • Bączek-Kwinta R, Antonkiewicz J, Łopata-Stasiak A, Kępka W. 2019. Smoke compounds aggravate stress inflicted on Brassica seedlings by unfavourable soil conditions. Photosynt. 57(1):1–8. doi:10.32615/ps.2019.026.
  • Baker AJM, Brooks RR. 1989. Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery. 1:81–126.
  • Barbosa JZ, Poggere GC, Dalpisol M, Serrat BM, Bittencourt S, Motta ACV. 2017. Alkalinized sewage sludge application improves fertility of acid soils. Ciênc agrotec. 41(5):483–493. doi:10.1590/1413-70542017415006717.
  • Bidar G, Garcon G, Pruvot C, Dewaele D, Cazier F, Douay F, Shirali P. 2007. Behavior of Trifolium repens and Lolium perenne growing in heavy metal contaminated field: plant metal concentration and phytotoxicity. Environ Pollut. 147(3):546–553. doi:10.1016/j.envpol.2006.10.013.
  • BITESZ. 2015. Sewage sludge treatment and utilization strategy 2014-2023. (In Hungarian) Published by Stratégia 2014 Consortium, on the behalf of General Directorate of Water Management. https://www.bitesz.hu/wp-content/uploads/2016/11/SES_STRATEGIA_20150923.pdf
  • Black A, McLaren RG, Reichman SM, Speir TW, Condron LM, Houliston G. 2012. Metal bioavailability dynamics during a two-year trial using ryegrass (Lolium perenne L.) grown in soils treated with biosolids and metal salts. Soil Res. 50(4):304–311. doi:10.1071/SR11315.
  • Bolan NB, Aidu RN, Hoppala GC, Ark JP, Ora MLM, Udianta DB, Anneerselvam PP. 2010. Solute Interactions in Soils in Relation to the Bioavailability and Environmental Remediation of Heavy Metals and Metalloids. Pedologist. 53(3):1–18. doi:10.18920/pedologist.53.3_1.
  • Bolan NS, Park JH, Robinson B, Naidu R, Huh KY. 2011. Phytostabilization: a Green Approach to Contaminant Containment. Advances in Angronomy. 112:145–204. doi:10.1016/B978-0-12-385538-1.00004-4.
  • Burges A, Alkorta I, Epelde L, Garbisu C. 2018. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int J Phytoremediation. 20(4):384–397. doi:10.1080/15226514.2017.1365340.
  • Carlson CL, Adriano DC, Sajwan KS, Abels SL, Thoma DP, Driver JT. 1991. Effects of selected trace metals on germinating seeds of six plant species. Water Air Soil Pollut. 59(3-4):231–240. doi:10.1007/BF00211832.
  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Donald LS. 2007. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual. 36(5):1429–1443. doi:10.2134/jeq2006.0514.
  • Conesa HM, Moradi AB, Robinson BH, Kühne G, Lehmann E, Schulin R. 2009. Response of native grasses and Cicer arietinum to soil polluted with mining wastes; Implications for the management of land adjacent to mine sites. Environ Exp Bot. 65(2-3):198–204. doi:10.1016/j.envexpbot.2008.09.004.
  • Decree of FVM (Ministry of Agriculture and Rural Development). 2006. On authorization, storage, marketing and utilization of yield increasing materials (Decree No. 36/2006 (V.18.).
  • EPeLde L, Becerril JM, Mijangos I, Garbisu C. 2009. Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health. J Environ Qual. 38(5):2041–2049. doi:10.2134/jeq2009.0006.
  • Fei-Baffoe B, Amo-Asare J, Sulemana A, Miezah K. 2021. Levels of Lead, Copper, and Zinc in Cabbage (Brassica oleracea sp.) and Lettuce (Lactuca sativa sp.) Grown on Soil Amended with Sewage Sludge. J Environ Public Health. 2021:8386218. doi:10.1155/2021/8386218.
  • Feigl V, Gruiz K, Anton A. 2008. Application of combined chemical and phytostabilization in field experiments (Kombinált kémiai és fitostabilizáció alkalmazása szabadföldi kísérletben). In: National Conference on the Environment, Siófok, Hungary. 83–93.
  • Ferreira PAA, Lopes G, Santana NA, Marchezan C, Soares C, Guilherme LRG. 2022. Soil amendments affect the potential of Gomphrena claussenii for phytoremediation of a Zn- and Cd-contaminated soil. Chemosphere. 288(Pt 2):132508.
  • Gomes HI. 2012. Phytoremediation for bioenergy: challenges and opportunities. Environ Technol Rev. 1(1):59–66. doi:10.1080/09593330.2012.696715.
  • Gruiz K, Horváth B, Molnár M. 2001. Környezettoxikológia - Vegyi anyagok hatása az ökoszisztémára (in Hungarian). Műegyetemi Kiadó, Budapest.
  • Gruiz K, Vaszita E, Siki Z. 2007. Complex environemntal management of diffuse pollution of mining origin (in Hungarian) (Bányászati eredetű diffúz szennyezettség komplex kezelése). In: National Environmental Conference and Exhibition (Országos Környezetvédelmi Konferencia és Szakkiállítás), Siófok, Hungary. 109–122.
  • Gy F. 1999. Soil science (in Hungarian). Budapest: Mezőgazda Kiadó.
  • Gy Z. 1991. Environmental assessment of the impact of mine tailing dumps in the valley of Toka-stream – case-study. Budapest: ELTE TTK Department of Inorganic and Analytical Chemistry.
  • Hajihashemi S, Noedoost F, Hedayatzadeh F. 2019. Characterization of Brassica napus responses to diluted and undiluted industrial wastewater. Physiol Mol Biol Plants. 25(6):1469–1482. doi:10.1007/s12298-019-00717-w.
  • Hao XZ, Zhou DM, Wang YJ, Chen HM. 2004. Study of ryegrass in copper mine tailing treated with peat and chemical fertilizer. ActaPedologicaSinica. 41:645–648.
  • Hartley W, Lepp NW. 2008. Effect of in situ soil amendments on arsenic uptake in successive harvests of ryegrass (Lolium perenne cv Elka) grown in amended As-polluted soils. Environ Pollut. 156(3):1030–1040. doi:10.1016/j.envpol.2008.04.024.
  • Helmisaari H-S, Salema M, Derome J, Kiikkilä O, Uhlig C, Nieminen TM. 2007. Remediation of heavy metal–contaminated forest soil using recycled organic matter and native woody plants. J Environ Qual. 36(4):1145–1153. doi:10.2134/jeq2006.0319.
  • Hereman TC, Bittencourt-Oliveira M. 2012. Bioaccumulation of microcystins in lettuce. J Phycol. 48(6):1535–1537. doi:10.1111/jpy.12006.
  • Herwijnen R, Hutchings TR, Al-Tabbaa A, Moffat AJ, Johns ML, Ouki SK. 2007. Remediation of metal contaminated soil with mineral-amended composts. Environ Pollut. 150(3):347–354. doi:10.1016/j.envpol.2007.01.023.
  • Hou D, O’Connor D. 2020. Green and sustainable remediation: concepts, principles, and pertaining research. In: Deyi H, editor. Sustainable remediation of contaminated soil and groundwater. materials, processes, and assessment. Oxford (UK): Butterworth-Heinemann, Elsevier. p. 1–17. doi:10.1016/B978-0-12-817982-6.00001-X.
  • Jones S, Bardos RP, Kidd PS, Mench M, de Leij F, Hutchings T, Cundy A, Joyce C, Soja G, Friesl-Hanl W, et al. 2016. Biochar and compost amendments enhance copper immobilisation and support plant growth in contaminated soils. J Environ Manage. 171:101–112. doi:10.1016/j.jenvman.2016.01.024.
  • Jordán G, D’Alessandro M. 2004. Mining, mining waste and related environmental issues: problems and solutions in Central and Eastern European Candidate Countries. Ispra: Joint Research Centre of the European Commission.
  • Ke T, Guo G, Liu J, Zhang C, Tao Y, Wang P, Xu Y, Chen L. 2021. Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. Environ Pollut. 271:116314. doi:10.1016/j.envpol.2020.116314.
  • Ke W, Xiong ZT, Chen S, Chen J. 2007. Effects of copper and mineral nutrition on growth, copper accumulation and mineral element uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field sites. Environ Exp Bot. 59(1):59–67. doi:10.1016/j.envexpbot.2005.10.007.
  • Kisku GC, Barman SC, Bhargava SK. 2000. Contamination of soil and plants with potentially toxic elements irrigated with mixed industrial effluent and its impact on the environment. Water Air Soil Pollut. 120(1/2):121–137. doi:10.1023/A:1005202304584.
  • Kolahi M, Kazemi EM, Yazdi M, Goldson-Barnaby A. 2020. Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.): oxidative stress indicators and prediction of their genes. Plant Physiol Biochem. 146:71–89. doi:10.1016/j.plaphy.2019.10.032.
  • Korpelainen H, Pietiläinen M. 2020. Sorrel (Rumex acetosa L.): not only a weed but a promising vegetable and medicinal plant. Bot Rev. 86(3-4):234–246. doi:10.1007/s12229-020-09225-z.
  • Kovács E. 2005. Examination of heavy metals contaminated media from environmental technology point of view (in Hungarian) [PhD (doctoral) thesis]. Hungary: University of Debrecen.
  • Kumpiene J, Mench M, Bes CM, Fitts JP. 2011. Assessment of aided phytostabilization of copper-contaminated soil by X-ray absorption spectroscopy and chemical extractions. Environ Pollut. 159(6):1536–1542. doi:10.1016/j.envpol.2011.03.005.
  • Lakhdar A, Scelza R, Scotti R, Rao MA, Jedidi N, Gianfreda L, Abdelly C. 2010. The effect of compost and sewage sludge on soil biologic activities in salt affected soil. RC Suelo Nutr Veg. 10(1):40–47. doi:10.4067/S0718-27912010000100005.
  • Lehoczky É, Zs K, Németh T. 2006. Study of the transfer coefficient of Cadmium and Lead in ryegrass and lettuce. Commun Soil Sci Plant Anal. 37(15-20):2531–2539. doi:10.1080/00103620600822986.
  • Lehoczky É, Marth P, Szabados I, Palkovics M, Lukács P. 2000. Influence of soil factors on the accumulation of cadmium by lettuce. Commun Soil Sci Plant Anal. 31(11-14):2425–2431. doi:10.1080/00103620009370596.
  • Lehoczky É, Németh T, Kiss Z, Szalai T, et al. 2002. Cadmium and lead uptake by ryegrass, lettuce and white mustard plants on different soils. Agrokem es Talajt. 51(1–2):201–210. doi:10.1556/agrokem.51.2002.1-2.24.
  • Li H, Liu J, Li G, Shen J, Bergström L, Zhang F. 2015. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. AMBIO. 44(S2):274–285. doi:10.1007/s13280-015-0633-0.
  • Li P, Peng X, Luan Z, Zhao T, Zhang C, Liu B. 2016. Effects of red mud addition on cadmium accumulation in cole (Brassica campestris L.) under high fertilization conditions. J Soils Sediments. 16(8):2097–2104. doi:10.1007/s11368-016-1392-7.
  • Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J. 2003. Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil. 249(1):107–115. doi:10.1023/A:1022527330401.
  • Liu J, Xiong Z, Li T, Huang H. 2004. Bioaccumulaton and ecophysiological responses to copper stress in two populations of Rumex denatus L. from Cu contaminated and non-contaminated sites. Environ Exp Bot. 52(1):43–51. doi:10.1016/j.envexpbot.2004.01.005.
  • Loch J, Györi Z, Vágó I. 1993. Examining the Cr uptake of Italian ryegrass from inorganic compounds and sewage sludge in pot experiments. Sci Total Environ. 134:347–355. doi:10.1016/S0048-9697(05)80035-X.
  • Margenat A, Matamoros V, Díez S, Cañameras N, Comas J, Bayona JM. 2018. Occurrence and bioaccumulation of chemical contaminants in lettuce grown in peri-urban horticulture. Sci Total Environ. 637-638:1166–1174. doi:10.1016/j.scitotenv.2018.05.035.
  • Medyńska-Juraszek A, Bednik M, Chohura P. 2020. Assessing the influence of compost and biochar amendments on the mobility and uptake of heavy metals by green leafy vegetables. Int J Environ Res Public Health. 17(21):7861. doi:10.3390/ijerph17217861.
  • Mench M. 2005. Assisted phytostabilization and mechanisms to reduce trace element bioavailability in contaminated soils. International Workshop, Current Developments in Remediation of Contaminated Sites. IUNG. Pulawy, Poland. p. 5–7.
  • Moreno-Jiménez E, García-Gómez C, Oropesa AL, Esteban E, Haro A, Carpena-Ruiz R, Tarazona JV, Peñalosa JM, Fernández MD. 2011. Screening risk assessment tools for assessing the environmental impact in an abandoned pyritic mine in Spain. Sci Total Environ. 409(4):692–703. doi:10.1016/j.scitotenv.2010.10.056.
  • Nagy A, Magyar T, Juhász C, Tamás J. 2020. Phytoremediation of acid mine drainage using by-product of lysine fermentation. Water Sci Technol. 81(7):1507–1517. doi:10.2166/wst.2020.240.
  • Nagy A, Tamás J, Burai P. 2007. Application of advanced technologies for the detection of pollution migration. Cereal Res Commun. 35(2):805–808. doi:10.1556/CRC.35.2007.2.160.
  • Németh J. 1998. Methods of biological water qualification (in Hungarian). Budapest Környezetgazdálkodási Intézet. 7:230–232.
  • Nikolic N, Böcker R, Kostic-Kravljanac L, Nikolic M. 2014. Assembly processes under severe abiotic filtering: adaptation mechanisms of weed vegetation to the gradient of soil constraints. PLoS ONE. 9(12):e114290. doi:10.1371/journal.pone.0114290.
  • Nikolic N, Böcker R, Nikolic M. 2016. Long-term passive restoration following fluvial deposition of sulphidic copper tailings: nature filters out the solutions. Environ Sci Pollut Res Int. 23(14):13672–13680. doi:10.1007/s11356-015-5205-0.
  • Ódor L, Wanty RB, Horváth I, Fügedi U. 1997. Mobilization and attenuation of metals downstream from a base-metal mining site in the Mátra Mountains, northeastern Hungary. J Geochem Explor. 65(1):47–60. doi:10.1016/S0375-6742(98)00056-9.
  • Organization for the Economic Cooperation and Development (OECD). 2006. Terrestrial plant test: seedling emergence and seedling growth test. OECD Guidelines for Testing of Chemicals, No. 208. Paris.
  • Pandey VC, Bajpai O, Singh N. 2016. Energy crops in sustainable phytoremediation. Renewable Sustainable Energy Rev. 54:58–73. doi:10.1016/j.rser.2015.09.078.
  • Pandey VC, Singh DP. 2020. Phytoremediation potential of perennial grasses. 1st ed. Amsterdam (Netherlands): Elsevier Inc.
  • Patel A. 2019. Miscellaneous methods. In: Geotechnical investigations and improvement of ground conditions. Sawston, Cambridge (UK): Woodhead Publishing Series in Civil and Structural Engineering. p. 77–86.
  • Petruzzelli G, Pedron F, Rosellini I, Barbafieri M. 2015. The bioavailability processes as a key to evaluate phytoremediation efficiency. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L, editors. Phytoremediation: management of environmental contaminants. Switzerland: Springer International Publishing. p. 31–43. doi:10.1007/978-3-319-10395-2_3.
  • Pichtel J, Bradway DJ. 2008. Conventional crops and organic amendments for Pb, Cd and Zn treatment at a severely contaminated site. Bioresour Technol. 99(5):1242–1251. doi:10.1016/j.biortech.2007.02.042.
  • Pichtel J, Salt CA. 1998. Vegetative growth and trace metal accumulation on metalliferous wastes. J Environ Qual. 27(3):618–624. doi:10.2134/jeq1998.00472425002700030020x.
  • Prasad MNV, Freitas HM. 2003. Metal hyperaccumulation in plants- biodiversity prospecting for phytoremediation technology. Electron J Biotechnol. 6(3):285–321. doi:10.2225/vol6-issue3-fulltext-6.
  • Radziemska M, Bilgin A, Vaverková MD. 2018. Application of mineral-based amendments for enhancing phytostabilization in Lolium perenne L. cultivation. Clean Soil Air Water. 46(1):1600610–1600679. doi:10.1002/clen.201600679.
  • Radziemska M, Gusiatin Z, Mazur Z, Hammerschmiedt T, Bęś A, Kintl A, Galiova MV, Holatko J, Blazejczyk A, Kumar V, et al. 2021. Biochar-assisted phytostabilization for potentially toxic element immobilization. Sustainability. 14(1):445. doi:10.3390/su14010445.
  • Radziemska M, Vaverková MD, Baryła A. 2017. Phytostabilization—management strategy for stabilizing trace elements in contaminated soils. Int J Environ Res Public Health. 14(9):958. doi:10.3390/ijerph14090958.
  • Radziemska M, Vaverková MD, Mazur Z. 2019. Pilot scale use of compost combined with sorbents to phytostabilize ni-contaminated soil using Lolium perenne L. Waste Biomass Valor. 10(6):1585–1595. doi:10.1007/s12649-017-0166-9.
  • Radziemska M, Gusiatin M, Bilgin A. 2017. Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead. Ecol Eng. 102:490–500. doi:10.1016/j.ecoleng.2017.02.028.
  • Santibáñez C, Verdugo C, Ginocchio R. 2008. Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Sci Total Environ. 395(1):1–10. doi:10.1016/j.scitotenv.2007.12.033.
  • Shan Y, Lv M, Zuo W, Tang Z, Ding C, Yu Z, Shen Z, Gu C, Bai Y. 2021. Sewage sludge application enhances soil properties and rice growth in a salt-affected mudflat soil. Sci Rep. 11(1):1402. doi:10.1038/s41598-020-80358-2.
  • Simon L, Bíró B. 2005. Adalékanyagok, vörös csenkesz és Zn-toleráns arbuszkuláris mikorrhiza gombák szerepe a nehézfémekkel szennyezett gyöngyösoroszi bányameddő remediációjában. Agrokémia és Talajtan. 54(1-2):163–176. doi:10.1556/agrokem.54.2005.1-2.12.
  • Simon L, Tamás J, Kovács E, Kovács B, Bíró B. 2006. Stabilization of metals in mine spoil with amendments and growth of red fescue in symbiosis with mycorrhizal fungi. Plant Soil Environ. 52(9):385–391. doi:10.17221/3456-PSE.
  • Simon L, Vincze G. 2015. Utilization of wastewaters and sewage sludges for the sustainable agriculture of the region. (Szennyvizek és szennyvíziszapok hasznosítása a régió fenntartható mezőgazdaságáért.) Nyíregyháza, Hungary: College of Nyíregyháza. p. 1–120.
  • Simon L. 2005. Stabilization of metals in acidic mine spoil with amandements and red fescue (Festuca rubra L.) growth. Environ Geochem Health. 27(4):289–300. doi:10.1007/s10653-004-5977-5.
  • Singh RP, Agrawal M. 2010. Effect of different sewage sludge applications on growth and yield of Vigna radiata L. field crop: metal uptake by plant. Ecol Eng. 36(7):969–972. doi:10.1016/j.ecoleng.2010.03.008.
  • Sipos M. 2008. The effect of nickel-contamination, nitrogen-supply and liming on the chemical composition of perennial ryegrass (Lolium perenne L.) (A nikkel-szennyezés, a nitrogen trágyázás és a calcium karbonát adagolás hatása az angolperje (lolium perenne L.) elemtartalmára). Acta Agraria Debreceniensis. 30:85–92. doi:10.34101/actaagrar/30/2996.
  • Smith RAH, Bradshaw AD. 1979. The use of metal tolerant plant populations for the reclamation of metalliferous wastes. J Appl Ecol. 16(2):595–612. doi:10.2307/2402534.
  • Song D, Han Q, Dong Z, Zh H. 2014. Genetic transformation of lettuce (Lactuca sativa): A review. Afr J Biotechnol. 13(16):1686–1693. doi:10.5897/AJB2014.13651.
  • Stuczynski T, Siebelec G. 2005. Revegetation and site assessment of zinc and lead smelter waste in silesia region of Poland. International Workshop Current Developments in Remediation of Contaminated Sites. IUNG. Pulawy, Poland. p. 31.
  • Subašić M, Šamec D, Selović A, Karalija E. 2022. Phytoremediation of Cadmium Polluted Soils: current Status and Approaches for Enhancing. Soil Systems. 6(1):3. doi:10.3390/soilsystems6010003.
  • SzczygłowskaM, Piekarska A, Konieczka P, Namieśnik J. 2011. Use of Brassica Plants in the Phytoremediation and Biofumigation Processes. Int J Mol Sci. 12(11):7760–7771. doi:10.3390/ijms12117760.
  • Tamanini CR, Motta ACV, Andreoli CV, Doetzer BH. 2008. Land recalamtion recovery with sewage sludge use. Environ Sci. 51(4):843–855. doi:10.1590/S1516-89132008000400023.
  • Tamás J, Kovács E. 2003. Characterisation of a heavy metal polluted site for a phytoremediation project. Paper presented at: Proceedings of the 10th International Trace Element Research. New Results in the Trace Element Research, Budapest, p. 318–333.
  • Trakal L, Neuberg M, Tlustoš P, Száková J, Tejnecký V, Drábek O. 2011. Dolomite limestone application as a chemical immobilization of metal-contaminated soil. Plant Soil Environ. 57(4):173–179. doi:10.17221/408/2010-PSE.
  • Trojanowska A. 2005. Lettuce, Lactuca sp., as a medicinal plant in polish publications of the19th century. Kwart Hist Nauki Tech. 50(3-4):123–134.
  • Tsadilas CD, Mantakas G, Tantos V, Brofas G, Papadopoulos S. 2005. Reclamation of disturbed land from mining activities using municipal sewage sludge I. Influence on biomass production and soil properties. International Workshop, Current developments in remediation of contaminated sites. IUNG. Pulawy, Poland. p. 34–35.
  • Tsadlias CD, Samaras V. 1998. Influence of sewage sludge application on soil quality: i. Organic matter, pH, phosphorus, potassium, and inorganic nitrogen. Proceedings of the Fourth International Conference of Precision Agriculture, St. Paul, Minnesota, USA, p. 19–22. Part A and Part B.
  • Vágó I, Loch J, Győri Z. 1997. The nickel uptake by ryegrass. In: Nagy J, editor. Soil, plant environment relationships. Debrecen: Agricultural Universitiy. p. 228–240.
  • Vér Z. 2006. Investigation of the heavy metal content of soils with different solubilities in the Keszthely National Fertilization Experiment (Talajok különböző oldhatóságú nehézfémtartalmának vizsgálata a Keszthelyi Országos Műtrágyázási Tartamkísérletben). [Doctoral dissertation]. Keszthely.
  • Xu L, Xing X, Cui H, Zhou J, Zhou J, Peng J, Bai J, Zheng X, Ji M. 2021. The combination of lime and plant species effects on trace metals (copper and cadmium) in soil exchangeable fractions and runoff in the red soil Region of China. Front Environ Sci. 9:638324. doi:10.3389/fenvs.2021.638324.
  • Yan A, Wang Y, Tan SN, Yusof MLM, Ghosh S, Chen Z. 2020. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci. 11:359. doi:10.3389/fpls.2020.00359.
  • Yang Y, Zhou X, Tie B, Peng L, Li H, Wang K, Zeng Q. 2017. Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil. Chemosphere. 188:148–156. doi:10.1016/j.chemosphere.2017.08.140.
  • Yashim ZI, Israel OK, Hannatu M. 2014. A study of the uptake of heavy metals by plants near metal-scrap dumpsite in Zaria, Nigeria. J Appl Chem. 2014:394650. doi:10.1155/2014/394650.
  • Ye M, Li JT, Tian SN, Hu M, Yi S, Liao B. 2008. Biogeochemical studies of metallophytes from four copper-enriched sites along the Yangtze River, China. Environ Geol. 56(7):1313–1322. doi:10.1007/s00254-008-1229-9.
  • Yuanyuan Z, Junhong L, Yuanming Z, Tingyun G, Jing W, Yinlin G. 2013. Enhanced phytoremediation of mixed heavy metal (mercury)–organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. J Hazard Mater. 260:1100–1107. doi:10.1016/j.jhazmat.2013.06.065.
  • Zhang L, Zeng G, Dong H, Chen Y, Zhang J, Yan M, Zhu Y, Yuan Y, Xie Y, Huang Z. 2017. The impact of silver nanoparticles on the co-composting of sewage sludge and agricultural waste: evolutions of organic matter and nitrogen. Bioresour Technol. 230:132–139.
  • Zhuang P, Yang QW, Wang HB, Shu WS. 2007. Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut. 184(1–4):235–242. doi:10.1007/s11270-007-9412-2.
  • Zine H, Midhat L, Hakkou R, El Adnani M, Ouhammou A. 2020. Guidelines for a phytomanagement plan by the phytostabilization of mining wastes. Sci Afr. 10:e00654. doi:10.1016/j.sciaf.2020.e00654.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.