296
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Study of the phytoremediation potential of native plant species identified in an area contaminated by volatile organic compounds: a systematic review

ORCID Icon, , , , , , , & show all

References

  • Abdel-Shafy H, Mansour MSM. 2018. Phytoremediation for the Elimination of Metals, Pesticides, PAHs, and Other Pollutants from Wastewater and Soil. In: H. Abdel-Shafy, editor. Phytobiont and ecosystem restitution. China: Springer Nature Singapore Pte Ltd. p. 101–136.
  • Adams RH, et al. 2015. Efecto de la concentración de hidrocarburos sobre la producción del pasto (Brachiaria humidicola) en Texistepec, Veracruz. Revista Internacional de Botânica Experimental.
  • Adie GU, Osibanjo O. 2010. Accumulation of lead and cadmium by four tropical forage weeds found in the premises of an automobile battery manufacturing company in Nigeria. J Toxicol Environ Chem. 92(1):39–49. doi:10.1080/02772240902918337.
  • Ahsan MT, Najam-Ul-Haq M, Saeed A, Mustafa T, Afzal M. 2018. Augmentation with potential endophytes enhances phytostabilization of Cr in contaminated soil. Environ Sci Pollut Res. 25(7):7021–7032. doi:10.1007/s11356-017-0987-x.
  • Ahsan MT, Tahseen R, Ashraf A, Mahmood A, Najam-Ul-Haq M, Arslan M, Afzal M. 2019. Effective plant-endophyte interplay can improve the cadmium hyperaccumulation in Brachiaria mutica. World J Microbiol Biotechnol. 35(12):188. doi:10.1007/s11274-019-2757-z.
  • Akram A, Tara N, Khan MA, Abbasi SA, Irfan M, Arslan M, Afzal M. 2020. Enhanced remediation of Cr6+ in bacterial-assisted floating wetlands. Water Environ J. 34 (S1):970–978. doi:10.1111/wej.12551.
  • Alarcón A, García Díaz M, Hernández Cuevas LV, Esquivel Cote R, Ferrera-Cerrato R, Almaraz Suarez JJ, Ferrera Rodriguez O. 2019. Impact of crude oil on functional groups of culturable bacteria and colonization of symbiotic microorganisms in the Clitoria-brachiaria rhizosphere grown in mesocosms. Acta biol Colomb. 24(2):343–353. doi:10.15446/abc.v24n2.64771.
  • Alvarez-Bernal D, et al. 2007. Influence of catclaw Mimosa monancistra on the dissipation of soil PAHs. Int J Phytorem. 9(2):79–90.
  • Ashraf MA, Maah JM, Yusoff I. 2011. Study of tin accumulation strategy by Cyperus speciesin pot experiments. Scientific Research and Essays. 6(1):71–78. doi:10.5897/SRE10.689.
  • Andrade A, et al. 2014. EDTA-induced phytoextraction of lead and barium by brachiaria (B. decumbens cv. Basilisk) in soil contaminated by oil exploration drilling waste. Acta Scientiarum Agronomia. 36(4):495–500.
  • Anh BTK, et al. 2011. Phytoremediation potential of indigenous plants from Thai Nguyen province, Vietnam. J Environ Biol. 32(2):257–262.
  • Aqeel MA, et al. 2012. Assessment of phytoextraction efficiency of naturally grown plant species at the former tin mining catchment. J Chem Technol Biotechnol. 21(3):523–533.
  • Aqeel MA, et al. 2013. Evaluation of natural phytoremediation process occurring at ex-tin mining catchment. Chiang Mai J Sci. 40(2):198–213.
  • Araújo ASA, Guilherme LRG, Lopes G, Campos ML. 2011. Fitorremediação de solos contaminados com arsênio (As) utilizando braquiária. Ciênc agrotec. 35 (1):84–91. doi:10.1590/S1413-70542011000100010.
  • Arroyave C, et al. 2010. Evaluación de la bioacumulación y toxicidad de cadmio y mercurio en pasto llanero (Brachiaria dictyoneura). Vitae. 17(1):45–49.
  • Asensio V, G. Flórido F, Ruiz F, Perlatti F, Otero XL, Ferreira TO. 2018. Screening of native tropical trees for phytoremediation in copper-polluted soils. Int J Phytorem. 20(14):1456–1463. doi:10.1080/15226514.2018.1501341.
  • Ashraf MA, Maah JM, Yusoff I. 2011. Study of tin accumulation strategy by Cyperus speciesin pot experiments. Scientific Research and Essays. 6(1):71–78. doi:10.5897/SRE10.689.
  • Ashraf MA, Maah MJ, Yusoff I. 2012. Assessment of phytoextraction efficiency of naturally grown plant species at the former tin mining catchment. Fresenius Environ Bull. 21(3):523–533.
  • Ashraf S, et al. 2018. Plant-endophyte synergism in constructed wetlands enhances the remediation of tannery effluent. Water Sci Technol. 77(5-6):1262–1270.
  • Ashraf S, Naveed M, Afzal M, Seleiman MF, Al-Suhaibani NA, Zahir ZA, Mustafa A, Refay Y, Alhammad BA, Ashraf S, et al. 2020. Unveiling the potential of novel macrophytes for the treatment of tannery effluent in vertical flow pilot constructed wetlands. Water. 12 (2):549. doi:10.3390/w12020549.
  • Basumatary B, et al. 2012. Assessment of potential plant species for phytoremediation of hydrocarbon-contaminated areas of upper Assam, India.
  • Belo AF, et al. 2011. Photosynthetic activity of plants cultivated in soil contaminated with picloram. Planta Daninha. 29(4): 885–892.
  • Bernal JMG, et al. 2018. Heavy Metals and Arsenic Phytoavailability Index in Pioneer Plants from a Semipermanent Natural Wetland. Environ Progress Sustain Energ.
  • Bharathiraja B, et al. et al. 2018. Phytoremediation techniques for the removal of dye in wastewater. In: B Bharathiraja, editor. Bioremediation: applications for environmental protection and management. China: springer Nature Singapure Pte Ltd. p. 243–250.
  • Braga RR, dos Santos JB, Zanuncio JC, Bibiano CS, Ferreira EA, Oliveira MC, Silva DV, Serrão JE. 2016. Effect of growing Brachiria brizantha on phytoremediation of picloram under different pH environments. Ecol Eng. 94:102–106. doi:10.1016/j.ecoleng.2016.05.050.
  • Brankovic S, Glisic R, Djekic V, Marin М. 2015. Metal accumulation and tolerance of selected plants of asbestos tailings (stragari). Hem Ind. 69(3):313–321. doi:10.2298/HEMIND131017045B.
  • Campos V, et al. 2014. Assessment of the removal capacity, tolerance, and anatomical adaptation of different plant species to benzene contamination. Poluição da Água, Do ar e Do Solo.
  • Cano V, Vich DV, Rousseau DPL, Lens PNL, Nolasco MA. 2019. Influence of recirculation over COD and N-NH4 removals from landfill leachate by horizontal flow constructed treatment wetland. Int J Phytorem. 21(10):998–1004. doi:10.1080/15226514.2019.1594681.
  • Carmo ML, Procopio SO, Pires FR, Cargnelutti Filho A, Barroso ALL, Silva GP, Carmo EL, Braz GBP, Silva WFP, Braz A, et al. 2008. Seleção de plantas para fitorremediação de solos contaminados com picloram. Planta daninha. 26 (2):301–313. doi:10.1590/S0100-83582008000200006.
  • Charris JC, Osorio AC. 2016. Contaminant removal efficiency from domestic wastewater using experimental constructed wetlands planted with Cyperus ligularis (Cyperaceae) and Echinochloa colonum (Poaceae). Tecnología y Ciencias Del Agua.
  • Chávez M, et al. 2010. Efectos de rizosfera, microorganismos y fertilización en la biorremediación y fitorremediación de suelos con petróleos crudo nuevo e intemperizado. Universidad y Ciência.
  • Chayapan P, et al. 2015. Phytoremediation potential of Cd and Zn by wetland plants, Colocasia esculenta L. Schott, Cyperus malaccensis Lam. and Typha angustifolia L. grown in hydroponics. J Environ Biol.
  • Chen F, Huber C, Schröder P. 2017. Fate of the sunscreen compound oxybenzone in Cyperus alternifolius based hydroponic culture: uptake, biotransformation and phytotoxicity. Chemosphere. 182:638–646. doi:10.1016/j.chemosphere.2017.05.072.
  • Chen J, et al. 2009. Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Springer Science.
  • Chen J, et al. 2016. Interspecific differences in growth response and tolerance to the antibiotic sulfadiazine in ten clonal wetland plants in South China. Ciência do Meio Ambiente Total.
  • Cheng S, Grossea W, Karrenbrock F, Thoennessen M. 2002. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng. 18(3):317–325.
  • Cipriani HN, Dias LE, Costa MD, Campos NV, Azevedo AA, Gomes RJ, Fialho IF, Amezquita SPM. 2013. Arsenic toxicity in acacia mangium willd. and mimosa caesalpiniaefolia benth. Seedlings. Rev Bras Ciênc Solo. 37(5):1423–1430. doi:10.1590/S0100-06832013000500031.
  • Claveria RJR, et al. 2019. The identification of indigenous Cu and As metallophytes in the Lepanto Cu-Au Mine, Luzon, Philippines. Springer Nature Switzerland AG.
  • Companhia Ambiental Do Estado De São Paulo (CETESB). 2015. Apêndice D - significado ambiental e sanitário das variáveis de qualidade. São Paulo: CETESB.
  • Companhia Ambiental Do Estado De São Paulo (CETESB). 2020. Poluentes. São Paulo: CETESB.
  • Cornara L, et al. 2007. Level of trace elements in Pteridophytes growing on serpentine and metalliferous soils. Wiley Online Library.
  • Corroto C, Iriel A, Cirelli AF, Carrera AP. 2019. Constructed wetlands as an alternative for arsenic removal from reverse osmosis effluent. Sci Total Environ. 691:1242–1250. doi:10.1016/j.scitotenv.2019.07.234.
  • Costa AB, Zoltowski APC. 2014. Como escrever um artigo de revisão sistemática Disponível em: https://www.researchgate.net/publication/323255862_Como_escrever_um_artigo_de_revisao_sistematica
  • Cunningham SD, Berti WR, Huang JW. 1995. Phytoremediation of contaminated soils. TIBTECH. 13:393–398.
  • Da Silva MM, Monteiro JA. 2018. Nickel and Nitrogen Phytoremediation by Cyperus involucratus: nickel Impairs Biomass Production and Nitrogen Removal. International Congress on Engineering and Sustainability in the XXI Century,
  • D’aquino L, et al. 2018. Uptake and distribution of several inorganic ions in Nephrolepis cordifolia (L.) C. Presl grown on contaminated soil. Off J Societa Botanica Ital.
  • De Souza SCR, et al. 2012. Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. J Environ Manage.
  • Deng T, Liao M, Pan Z, Liu C. 2006. Phytoremediation of Nephrolepis auriculata (L.) for arsenic, mercury, lead and cadmium in the multiple contaminated soils. Chin J Geochem. 25(S1):95–95. doi:10.1007/BF02839920.
  • Dolphen R, Thiravetyan P. 2019. Treatment of ink production wastewater by chemical precipitation coupled with Cyperus alternifolius: pigments, organic compounds and ammonium removal. DWT. 151:183–188. doi:10.5004/dwt.2019.23820.
  • Dolphen R, Boonapatcharoen N, Techkarnjanaruk S, Thiravetyan P. 2019. Using Cyperus alternifolius for treating ink factory wastewater: effect of microbial communities in the system. dwt. 137:49–57. doi:10.5004/dwt.2019.22998.
  • Fahid M, Ali S, Shabir G, Rashid Ahmad S, Yasmeen T, Afzal M, Arslan M, Hussain A, Hashem A, Abd Allah EF, et al. 2020. Cyperus laevigatus L. enhances diesel oil remediation in synergism with bacterial inoculation in floating treatment wetlands. Sustainability. 12(6):2353. doi:10.3390/su12062353.
  • Farrag HF, Manal F. 2012. Phytoremediation potentiality of Cyperus articulatus L. Acta Physiol Plant.
  • Fátima K, et al. 2015. Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil. Bull Environ Contamination Toxicol.
  • Fatima K, Imran A, Amin I, Khan QM, Afzal M. 2016. Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil. Environ Sci Pollut Res. 23 (7):6188–6196. doi:10.1007/s11356-015-5845-0.
  • Fatima K, Imran A, Amin I, Khan QM, Afzal M. 2018. Successful phytoremediation of crude-oil contaminated soil at an oil exploration and production company by plants-bacterial synergism. Int J Phytorem. 20(7):675–681. doi:10.1080/15226514.2017.1413331.
  • Fayiga AO, Ma LQ, Santos J, Rathinasabapathi B, Stamps B, Littell RC. 2005. Effects of Arsenic Species and Concentrations on Arsenic Accumulation by Different Fern Species in a Hydroponic System. Int J Phytorem. 7(3):231–240. doi:10.1080/16226510500215720.
  • Ferreira PAA, et al. 2013. Leguminous plants nodulated by selected strains of Cupriavidus necator grow in heavy metal contaminated soils amended with calcium silicate. World J Microbiol Biotechnol.
  • Franco MHR, França AC, Albuquerque MT, Schiavon NC, Vargas GN. 2014. Fitorremediação de solos contaminados com picloram por Urochloa brizantha. Pesqui Agropecu Trop. 44 (4):460–467. doi:10.1590/S1983-40632014000400003.
  • Ganjo DGA, Mirza HA. 2013. Cyperus longus L. as a biological purifier of wastewater for irrigation purposes: removal efficiency and Zn, Cd, Cu, Fe and Mn. In: WIT Transactions on Biomedicine and Health. Vol 16. WIT Press. doi:10.2495/EHR130211
  • Gaskin SE, Bentham RH. 2010. Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Sci Total Environ. 408 (17):3683–3688. doi:10.1016/j.scitotenv.2010.05.004.
  • Gaskin S, Soole K, Bentham R. 2008. Screening of Australian native grasses for rhizoremediation of aliphatic hydrocarbon-contaminated soil. Int J Phytorem. 10 (5):378–389. doi:10.1080/15226510802100465.
  • Gautam M, Agrawal M. 2019. Identification of metal tolerant plant species for sustainable phytomanagement of abandoned red mud dumps. Appl Geochem. 104:83–92. doi:10.1016/j.apgeochem.2019.03.020.
  • Gomes MP, Moura PAS, Nascentes CC, Scotti MR. 2015. Arbuscular Mycorrhizal Fungi and Arsenate Uptake by Brachiaria Grass (Brachiaria decumbens. Biorem J. 19(2):151–159. doi:10.1080/10889868.2014.938726.
  • Gonzaga MIS. 2007. Comparison of root-system efficiency and arsenic uptake of two fern species. J Homepage.
  • Gonzaga MIS, Santos JAG, Ma LQ. 2006. Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata. Poluição Ambiental. 143(2): 254–260. doi: 10.1016/j.envpol.2005.11.037.
  • Guerro-Zúñiga AL, Rodríguez-Dorantes A. 2005. Ma. Comparación de la capacidad de remoción de fenantreno y la actividad enzimática radical superficial de cultivos radicales (in toto e in vitro) de cyperus elegans. Polibotânica. 20:31–45.
  • Hamad MTMH. 2020. Comparative study on the performance of Typha latifolia and Cyperus Papyrus on the removal of heavy metals and enteric bacteria from wastewater by surface constructed wetlands. Chemosphere. 260:127551. doi:10.1016/j.chemosphere.2020.127551.
  • Hou Y, Liu X, Zhang X, Hu X, Cao L. 2016. Rhizosphere phytoremediation with cyperus rotundus for diesel-contaminated wetlands. Water Air Soil Pollut. 227(1) doi:10.1007/s11270-015-2728-4.
  • Hua Z, et al. 2013. Purifying urban river waters with floating bed systems. Scientific Net, the Trademark of Trans Tech Publications.
  • Huang P, et al. 2017. Application of combined emergent plants in floating bed for phytoremediation of landscape pond in South China. Environ Technol Manage.
  • Huang P, et al. 2004. Phytofiltration of arsenic from drinking water using arsenic-hyperaccumulating ferns. Environ Sci Technol.
  • Hussain Z, Arslan M, Malik MH, Mohsin M, Iqbal S, Afzal M. 2018. Treatment of the textile industry effluent in a pilot-scale vertical flow constructed wetland system augmented with bacterial endophytes. Sci Total Environ. 645:966–973. doi:10.1016/j.scitotenv.2018.07.163.
  • Idris M, Abdullah SRS, Titah HS, Latif MT, Abasa AR, Husin AK, Hanima RF, Ayub R, Universiti Kebangsaan Malaysia. 2016. Screening and Identification of Plants at a Petroleum Contaminated Site in Malaysia For Phytoremediation. JESAM. 19(1):27–36. doi:10.47125/jesam/2016_1/04.
  • Ijaz A, Shabir G, Khan QM, Afzal M. 2015. Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Ecol Eng. 84:58–66. doi:10.1016/j.ecoleng.2015.07.025.
  • Irga PJ, Pettit T, Irga RF, Paull NJ, Douglas ANJ, Torpy FR. 2019. Does plant species selection in functional active green walls influence VOC phytoremediation efficiency. Environ Sci Pollut Res. 26(13):12851–12858. doi:10.1007/s11356-019-04719-9.
  • Jarujareet P, Nakkanong K, Luepromchai E, Suttinun O. 2019. Bioaugmentation coupled with phytoremediation for the removal of phenolic compounds and color from treated palm oil mill effluent. Environ Sci Pollut Res. 26(31):32065–32079. doi:10.1007/s11356-019-06332-2.
  • Jesus SL, et al. 2009. Potencial de utilização de Cyperus rotundus na descontaminação de áreas de descarte de resíduos industriais com elevados teores de metais. Scielo.
  • Jomjun N, et al. 2011. Phytoremediation of arsenic in submerged soil by wetland plants. Int J Phytorem.
  • Jurelevicius D, et al. 2010. Polyphasic analysis of the bacterial community in the rhizosphere and roots of cyperus rotundus l. grown in a petroleum-contaminated soil. Int J Phytorem.
  • Kachenko AG, Singh B, Bhatia NP. 2007. Heavy metal tolerance in common fern species. Aust J Bot. 55(1):63. doi:10.1071/BT06063.
  • Khan AM. 2017. Accumulation, uptake and bioavailability of rare earth elements (REES) in soil grown plants from ex-mining area in Perak, Malaysia. Appl Ecol Env Res. 15(3):117–133. doi:10.15666/aeer/1503_117133.
  • Khan MM, Islam E, Irem S, Akhtar K, Ashraf MY, Iqbal J, Liu D. 2018. Pb-induced phytotoxicity in para grass (Brachiaria mutica) and Castorbean (Ricinus communis L.): antioxidant and ultrastructural studies. Chemosphere. 200:257–265. doi:10.1016/j.chemosphere.2018.02.101.
  • Koller CE, et al. 2008. Arsenic and heavy metal accumulation by Pteris vittata L. and P-umbrosa R. Br. Springer Science.
  • Krauter PW. 2001. Using a wetland bioreactor to remediate ground water contaminated with nitrate (mg/L) and perchlorate (mu g/L). Int J Phytorem. 3(4):415–433. doi:10.1080/15226510108500068.
  • Kullu B, Patra DK, Acharya S, Pradhan C, Patra HK. 2020. AM fungi mediated bioaccumulation of hexavalent chromium in Brachiaria mutica-a mycorrhizal phytoremediation approach. Chemosphere. 258:127337. doi:10.1016/j.chemosphere.2020.127337.
  • Kumar AY, et al. 2012. The removal of heavy metals in wetland microcosms: effects of bed depth, plant species, and metal mobility. Chem Eng J.
  • Lam EJ, Cánovas M, Gálvez ME, Montofré ÍL, Keith BF, Faz Á. 2017. Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile. J Geochem Explor. 182:210–217. doi:10.1016/j.gexplo.2017.06.015.
  • Lee JH. 2013. An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioproc E. 18(3):431–439. p doi:10.1007/s12257-013-0193-8.
  • Leto C, et al. 2013. Effects of plant species in a horizontal subsurface flow constructed wetland – phytoremediation of treated urban wastewater with Cyperus alternifolius L. and Typha latifolia L. in the West of Sicily (Italy). Ecol Eng. 61: 282–291. doi:10.1016/j.ecoleng.2013.09.014.
  • Leung HM, et al. 2017. Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components. Environ Sci Pollut Res.
  • Liu Y-J, et al. 2007. Which ornamental plant species effectively remove benzene from indoor air. Ambiente atmosférico.
  • Lizcano AL, et al. 2019. Efficiency of pilot-scale horizontal subsurface flow constructed wetlands and microbial community composition operating under tropical conditions. Int J Phytorem.
  • Lopes G, Ferreira PAA, Pereira FG, Curi N, Rangel WM, Guilherme LRG. 2016. Beneficial use of industrial by-products for phytoremediation of an arsenic-rich soil from a gold mining area. Int J Phytorem. 18 (8):777–784. doi:10.1080/15226514.2015.1131240.
  • Lou LQ, Ye ZH, Lin AJ, Wong MH. 2010. Interaction of Arsenic and Phosphate on Their Uptake and Accumulation in Chinese Brake Fern. Int J Phytorem. 12(5):487–502. doi:10.1080/15226510903051732.
  • Mahfooz Y, Yasar A, Guijian L, Yousaf B, Sohail MT, Khan S, Tabinda AB, Rasheed R, Mahmood S, Khan M, et al. 2020. An assessment of wastewater pollution, treatment efficiency and management in a semi-arid urban area of Pakistan. DWT. 177:167–175. doi:10.5004/dwt.2020.24949.
  • Maila M, et al. 2006. Multispecies and monoculture rhizoremediation of polycyclic aromatic hydrocarbons (PAHs) from the soil. Int J Phytorem.
  • Mant C, et al. 2009. Phytoremediation of chromium by model constructed wetland. Bioresour Technol.
  • Martinez LS, et al. 2008. Contaminated soil phytoremediation by Cyperus laxus Lam. Cytochrome p450 erod-activity induced by hydrocarbonsin roots. Tandfonline.
  • Mazzari M, et al. 2011. Potential of grasses and rhizosphere bacteria for bioremediation of diesel-contaminated soils. Revista brasileira de Ciência Do Solo.
  • Mbanga O, Ncube S, Tutu H, Chimuka L, Cukrowska E. 2019. Mercury accumulation and biotransportation in wetland biota affected by gold mining. Environ Monit Assess. 191(3) doi:10.1007/s10661-019-7329-z.
  • Mburu N, et al. 2015. Use of the macrophyte cyperus papyrus in wastewater treatment. UNESCO-HE Institute for Water Educ.
  • Mehmet A, Fulya C. 2009. Research on weed species for phytoremediation of boron polluted soil. Afr J Biotechnol.
  • Merkl N, Schultze-Kraft R, Infante C. 2005. Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut. 165 (1-4):195–209. doi:10.1007/s11270-005-4979-y.
  • Merkl N, Schultze-Kraft R, Infante C. 2004. Phytoremediation in the tropics—the effect of crude oil on the growth of tropical plants. Biorem J. 8 (3-4):177–184. doi:10.1080/10889860490887527.
  • Mohanty M, Pattnaik MM, Mishra AK, Patra HK. 2012. Bio-concentration of chromium-an in situ phytoremediation study at South Kaliapani chromite mining area of Orissa, India. Environ Monit Assess. 184(2):1015–1024. doi:10.1007/s10661-011-2017-7.
  • Mohanty M, Patra HK. 2012. Phytoremediation potential of paragrass- an in situ approach for chromium contaminated soil. Inter J Phytoremediation, 14(8):796–805. doi:10.1080/15226514.2011.619595.
  • Morales G, et al. 2013. Determinación de los efectos tóxicos del mercurio en la ESPECIE Brachiaria dictyoneura (Fig. & De Not.) Stapf. Avances en Ciencias e Ingeniería.
  • Mudumbi JB, Ntwampe SK, Muganza M, Okonkwo JO. 2014. Susceptibility of riparian wetland plants to perfluorooctanoic acid (pfoa) accumulation. Int J Phytorem. 16(9):926–936. doi:10.1080/15226514.2013.810574.
  • Mukhopadhyay S, Rana V, Kumar A, Maiti SK. 2017. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India. Environ Sci Pollut Res. 24(29):22990–23005. doi:10.1007/s11356-017-9930-4.
  • Mustapha HI, van Bruggen JJA, Lens PNL. 2018. Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria. Int J Phytorem. 20(1):44–53. doi:10.1080/15226514.2017.1337062.
  • Nakphet S, Ritchie RJ, Kiriratnikom S. 2017. Aquatic plants for bioremediation in red hybrid tilapia (Oreochromis niloticus x Oreochromis mossambicus) recirculating aquaculture. Aquacult Int. 25(2):619–633. doi:10.1007/s10499-016-0060-7.
  • Nandakumar S, Pipil H, Ray S, Haritash AK. 2019. Removal of phosphorous and nitrogen from wastewater in Brachiaria-based constructed wetland. Chemosphere. 233:216–222. doi:10.1016/j.chemosphere.2019.05.240.
  • Narendra K, et al. 2013. Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Sci Direct.
  • Nascimento SS, et al. 2014. Availability and accumulation of lead for forage grasses in contaminated soil. Jornal de Ciência Do Solo e Nutrição de Plantas.
  • Nazir A, et al. 2011. Hyperaccumulators of heavy metals of industrial areas of Islamabad and Rawalpindi. Pak J Bot.
  • Osem Y, et al. 2007. The effects of plant roots on microbial community structure in aerated wastewater-treatment reactors. J Ecos Restor.
  • Otones V, Álvarez-Ayuso E, García-Sánchez A, Santa Regina I, Murciego A. 2011. Mobility and phytoavailability of arsenic in an abandoned mining area. Geoderma. 166(1):153–161. doi:10.1016/j.geoderma.2011.07.024.
  • Patra DK, Pradhan C, Kumar J, Patra HK. 2020. Assessment of chromium phytotoxicity, phytoremediation and tolerance potential of Sesbania sesban and Brachiaria mutica grown on chromite mine overburden dumps and garden soil. Chemosphere. 252:126553. doi:10.1016/j.chemosphere.2020.126553.
  • Pettit T, et al. 2017. Do the plants in functional green walls contribute to their ability to filter: particulate matter? J Elsevier.
  • Pilon-Smits E. 2005. Phytoremediation. Annu Rev Plant Biol. 56(1):15–39. doi:10.1146/annurev.arplant.56.032604.144214.
  • Pino N, Muñera LM, Peñuela GA. 2016. Bioaugmentation with Immobilized Microorganisms to Enhance Phytoremediation of PCB-Contaminated Soil, Soil and Sediment Contamination. An International Journal. 25(4):419–430.
  • Pino NJ, Múnera LM, Peñuela GA. 2019. Phytoremediation of soil contaminated with PCBs using different plants and their associated microbial communities. Int J Phytoremediation. 21(4):316–324. doi:10.1080/15226514.2018.1524832.
  • Popovici PC, et al. 2018. Toxicity assessment of Nephrolepis Exaltata (l.) Schott. Scientific Anniversary Symposium.
  • Poynton CY, Huang JW, Blaylock MJ, Kochian LV, Elless MP. 2004. Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation. Planta. 219(6):1080–1088. doi:10.1007/s00425-004-1304-8.
  • Praveen A, Pandey VC. 2020. Pteridophytes in phytoremediation. Environ Geochem Health. 42(8):2399–2411. doi:10.1007/s10653-019-00425-0.
  • Rabêlo FHS, Borgo L, Merloti LF, Pylro VS, Navarrete AA, Mano RH, Thijs S, Vangronsveld J, Alleoni LRF. 2020. Effects of winter and summer conditions on Cd fractionation and bioavailability, bacterial communities and Cd phytoextraction potential of Brachiaria decumbens and Panicum maximum grown in a tropical soil. Sci Total Environ. 728:138885. doi:10.1016/j.scitotenv.2020.138885.
  • Rai K. P. 2009. Heavy metals in water, sediments and wetland plants in an aquatic ecosystem of tropical industrial region, India. Environ Monit Assess. 158 (1-4): 433–457. doi:10.1007/s10661-008-0595-9.
  • Ram C, Sangeeta Y. 2011. Heavy metals accumulation and ecophysiological effect on Typha angustifolia L. and Cyperus esculentus L. growing in distillery and tannery effluent. Ó Springer-Verlag.
  • Ram C, Sangeeta Y. 2011. Phytoremediation of cd, cr, cu, mn, fe, ni, pb and zn from aqueous solution using phragmites cummunis, typha angustifolia and cyperus esculentus. Int J Phytorem.
  • Raskin l, Smith RD, Salt DE. 1997. Phytoremediation of metals: using plants to remove pollutants from the environment. Plant Biotechnol. 221–226.
  • Ribeiro PRCdC, Viana DG, Pires FR, Egreja Filho FB, Bonomo R, Cargnelutti Filho A, Martins LF, Cruz LBS, Nascimento MCP. 2018. Selection of plants for phytoremediation of barium-polluted flooded soils. Chemosphere. 206:522–530. doi:10.1016/j.chemosphere.2018.05.056.
  • Rodriguez N, et al. 2017. Efecto de los metabolitos de las raíces de Avena sativa, Medicago sativa, Brachiaria decumbens y Brassica juncea en la degradación de PCBs. Actualidades Biológicas.
  • Salt DE, Smith RD, Raskin I. 1998. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol. 49(1):643–668. doi:10.1146/annurev.arplant.49.1.643.
  • Sampanpanish P, Nanthavong K. 2019. Effect of EDTA and NTA on Arsenic Bioaccumulation and Translocation Using Phytoremediation by Mimosa pudica L. from Contaminated Soils. Bull Environ. Contam. Toxicol.
  • Sanchez M, et al. 2010. Biomass production and heavy metal absorption by four plants grown at the Moravia dump, Medellín, Colombia. Acta biológica Colombiana.
  • Santos FSd, Amaral Sobrinho NMBd, Mazur N, Garbisu C, Barrutia O, Becerril JM. 2011. Resposta antioxidante, formação de fitoquelatinas e composição de pigmentos fotoprotetores em Brachiaria decumbens Stapf submetida à contaminação com Cd e Zn. Quím Nova. 34 (1):16–20. doi:10.1590/S0100-40422011000100004.
  • Santos J, et al. 2016. Biological attributes of rehabilitated soils contaminated with heavy metals. Environ Sci Pollut Res.
  • Silva EB, Fonseca FG, Alleoni LRF, Nascimento SS, Grazziotti PH, Nardis BO. 2016. Availability and toxicity of cadmium to forage grasses grown in contaminated soil. International Journal of Phytoremediation. 18(9):847–852. doi:10.1080/15226514.2016.1146225.
  • Silva IC, Rocha C, Rocha MC, Sousa CM. 2018. Growth of Brachiaria decumbens in Latosol contaminated with copper. Ciênc agrotec. 42 (2):168–175. doi:10.1590/1413-70542018422030317.
  • Silva RF, Andreazza R, Da Ros C, Dellai A, Jacques RJS, Scheid D. 2015. Growth of tropical tree species and absorption of copper in soil artificially contaminated. Braz J Biol. 75(4 suppl 1):119–125. doi:10.1590/1519-6984.07114.
  • Slonecker T, Haack B, Price S. 2009. Spectroscopic Analysis of Arsenic Uptake in Pteris Ferns. Remote Sensing. 1(4):644–675. doi:10.3390/rs1040644.
  • Soares CRFS, Siqueira JO. 2008. Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biol Fertil Soils. 44 (6):833–841. doi:10.1007/s00374-007-0265-z.
  • Soongsombat P, Kruatrachue M, Chaiyarat R, Pokethitiyook P, Ngernsansaruay C. 2009. Lead tolerance and accumulation in pteris vittata and pityrogramma calomelanos, and their potential for phytoremediation of lead-contaminated soil. Int J Phytorem. 11(4):396–412. doi:10.1080/15226510802565634.
  • Souza SCR. 2020. Zinc toxicity in seedlings of three trees from the Fabaceae associated with arbuscular mycorrhizal fungi. Ecotoxicology and Environmental Safety.
  • Sricoth T, Meeinkuirt W, Saengwilai P, Pichtel J, Taeprayoon P. 2018. Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments. Environ Sci Pollut Res. 25(15):14964–14976. doi:10.1007/s11356-018-1714-y.
  • Srivastava M, et al. 2005. Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exper Botany.
  • Srivastava M, et al. 2010. Comparison of arsenic accumulation in 18 fern species and four Pteris vittata accessions. J Elsevier.
  • Suchkova N, et al. 2014. Assessment of phytoremediation potential of native plants during the reclamation of an area affected by sewage sludge. J Ecos Restor.
  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L. 2010. Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol. 333(8):597–607. doi:10.1016/j.crvi.2010.03.002.20688280.
  • Teiri H, Pourzamzni H, Hajizadeh Y. 2018. Phytoremediation of formaldehyde from indoor environment by ornamental plants: An approach to promote occupants health. Inter J Prevent Med.
  • Thongtha S, Teamkao P, Boonapatcharoen N, Tripetchkul S, Techkarnjararuk S, Thiravetyan P. 2014. Phosphorus removal from domestic wastewater by Nelumbo nucifera Gaertn and Cyperus alternifolius L. J Environ Manage. 137:54–60. doi:10.1016/j.jenvman.2014.02.003.
  • Ullah S, et al. 2020. Comparing chromium phyto-assessment in Brachiaria mutica and Leptochloa fusca growing on chromium polluted soil. Chemosphere.
  • Ullah S, et al. 2020. Phytoextraction potential of different grasses for the uptake of cadmium and lead from industrial wastewater. Soil and Environment.
  • Ullah S, Mahmood T, Iqbal Z, Naeem A, Ali R, Mahmood S. 2019. Phytoremediative potential of salt-tolerant grass species for cadmium and lead under contaminated nutrient solution. Int J Phytorem. 21 (10):1012–1018. doi:10.1080/15226514.2019.1594683.
  • United States Environmental Protection Agency (US EPA). 2012. EPA 542-F-12-O16: a citizen’s guide to phytoremediation. Washington, DC: US EPA.
  • United States Environmental Protection Agency (US EPA). 2000. EPA/600/R-99/107: introduction to phytoremediation. Washington, DC: US EPA.
  • Valadi A, Shirinpur , et al. 2019. Study of the accumulation of contaminants by Cyperus alternifolius, Lemna minor, Eichhornia crassipes, and Canna x generalis in some contaminated aquatic environments. Environ Sci Pollut Res.
  • Vargas J, Perez , et al. 2016. Phytoremediation potential and ecological and phenological changes of native pioneer plants from weathered oil spill-impacted sites at tropical wetlands. Environ Sci Pollut Res.
  • Wang P, et al. 2008. Application of phytoremediation on soil contaminated. Environ Eng Sci.
  • Wang Y, et al. 2018. Cadmium tolerance and accumulation characteristics of wetland emergent plants under hydroponic conditions. The Royal Society of Chemistry.
  • Yan Q, et al. 2016. Insights into the molecular mechanism of the responses for Cyperus alternifolius to PhACs stress in constructed wetlands. Elsevier.
  • Yang H, Liu YJ, Shao W. 2012. Screening Houseplants to Remove Ammonia from Indoor Air through Fumigation. Scientific.net.
  • Yang JX, et al. 2016. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species. Tandfonline.
  • Yuan Y-K, Huang C-M. 2010. Investigation of the Water Purification Efficiency of Flood Irrigation System by Using Flora Succession as an Index. International Journal of Phytoremediation. 12(3):279–290. doi:10.1080/15226510903563884.
  • Zaman N, Qamaruz , et al. 2017. Investigation of the Potential of Cyperus alternifolius in the Phytoremediation of Palm Oil Mill Effluent. Nome Jornal/Revista.
  • Zamora S, Marín-Muñíz JL, Nakase-Rodríguez C, Fernández-Lambert G, Sandoval L. 2019. Wastewater Treatment by Constructed Wetland Eco-Technology: influence of Mineral and Plastic Materials as Filter Media and Tropical Ornamental Plants. Water. 11(11):2344. doi:10.3390/w11112344.
  • Zheng W, et al. 2018. Effects of Oxalic Acid on Arsenic Uptake and the Physiological Responses of Hydrilla verticillata Exposed to Different Forms of Arsenic. Springer Science + Business Media.
  • Zhiying W, et al. 2013. Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta Physiol Plant.
  • Zúñiga G, et al. 2009. Efecto de la presencia de fenantreno sobre la expresión de proteínas y la actividad enzimática radical de Cyperus hermaphroditus. Scielo.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.