135
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Vitex doniana seed activated carbon for methylene blue adsorption: equilibrium and kinetics

, & ORCID Icon

References

  • Abadian S, Shayesteh H, Rahbar-Kelishami A. 2022. Effective adsorption of diclofenac sodium from aqueous solution using cationic surfactant modified Cuminum cyminum agri-waste: kinetic, equilibrium, and thermodynamic studies. Int J Phytorem. https://doi.org/10.1080/15226514.2022.2113367.
  • Abi El-Latif MM, Ibrahim AM, El-Kady MF. 2010. Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using biopolymer oak sawdust composite. J Am Sci. 6(6):267–283.
  • Abnisa F, Wan-Daud WMA, Husin WNW, Sahu JN. 2011. Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass Bioenergy. 35(5):1863–1872. https://doi.org/10.1016/j.biombioe.2011.01.033.
  • Afshin S, Rashtbari Y, Shirmardi M, Vosoughi M, Hamzehzadeh A. 2019. Adsorption of basic violet 16 dye from aqueous solution onto mucilaginous seeds of Salvia sclarea: kinetics and isotherms studies. Desalin Water Treat. 161:365–375. https://doi.org/10.5004/dwt.2019.24265.
  • Ahsani-Namin Z, Norouzbeigi R, Shayesteh H. 2022. Green mediated combustion synthesis of copper zinc oxide using Eryngium planum leaf extract as a natural green fuel: excellent adsorption capacity towards Congo red dye. Ceram Int. 48(14):20961–20973. https://doi.org/10.1016/j.ceramint.2022.04.090.
  • Alam S, Rehman N, Amin N, Shah LA, Mian I, Ullah H. 2017. Removal of basic green 5 by carbonaceous adsorbent: adsorption kinetics. Bull Chem Soc Ethiop. 31(3):411–422. https://doi.org/10.4314/bcse.v31i3.5.
  • Alipour M, Vosoughi M, Mokhtari SA, Sadeghi H, Rashtbari Y, Shirmardi M, Azad R. 2019. Optimising the basic violet 16 adsorption from aqueous solutions by magnetic graphene oxide using the response surface model based on the Box–Behnken design. Int J Environ Anal Chem. 101(6):758–777. https://doi.org/10.1080/03067319.2019.1671378.
  • Aljebori AM, Alshirifi AN, Alkaim AF. 2017. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem. 10:S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020.
  • Amah UJ, Okogeri O. 2019. Nutritional and phytochemical properties of Wild Black Plum (Vitex doniana) seed from Ebonyi state. Int J Hort. 3(1):32–36. https://doi.org/10.22161/ijhaf.3.1.5.
  • Ameh PO, Odoh R, Oluwaseye A. 2012. Equilibrium study on the adsorption of Zn(II) and Pb(II) ions from aqueous solution onto vitex doniana nut. Int J Modern Chem. 3(2):82–97.
  • Aslam S, Zeng J, Subhan F, Li M, Lyu F, Li Y, Yan Z. 2017. In-situ one-step synthesis of Fe3O4 @ MIL-100 (Fe) core-shells for adsorption of methylene blue from water. J Colloid Interface Sci. 505:186–195. https://doi.org/10.1016/j.jcis.2017.05.090.
  • Bouaziz F, Koubaa M, Kallel F, Ghorbel RE, Chaabouni SE. 2017. Adsorptive removal of malachite green from aqueous solutions by almond gum: kinetic study and equilibrium isotherms. Int J Biol Macromol. 105:56–65. https://doi.org/10.1016/j.ijbiomac.2017.06.106.
  • Cazetta AL, Vargas AMM, Nogami EM, Kunita MH, Guilherme MR, Martins AC, Silva TL, Moraes JCG, Almeida VC. 2011. NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption. Chem Eng J. 174(1):117–125. https://doi.org/10.1016/j.cej.2011.08.058.
  • Chen C. 2013. Evaluation of equilibrium sorption isotherm equations. Chem Eng J. 7(1):24–44.
  • de Souza CC, de Souza LZM, Yılmaz M, de Oliveira MA, da Silva Bezerra AC, da Silva EF, Dumont MR, Machado ART. 2022. Activated carbon of Coriandrum sativum for adsorption of methylene blue: equilibrium and kinetic modeling. Cleaner Mater. 3:100052. https://doi.org/10.1016/j.clema.2022.100052.
  • Djilani C, Zaghdoudi R, Djazi F, Bouchekima B, Lallam A, Modarressi A, Rogalski M. 2015. Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. J Taiwan Inst Chem Eng. 53:112–121. https://doi.org/10.1016/j.jtice.2015.02.025.
  • Domga R, Abia D, Mouthe AGA, Musongo B, Wangmene B, Tchatchueng JB. 2021. Optimization of methylene blue adsorption onto activated carbon from Bos Indicus Ggudali bones using a Box Behnken experimental design. Am J Chem. 12(1):1–9.
  • El-Bery HM, Saleh M, El-Gendy RA, Saleh MR, Thabet SM. 2022. High adsorption capacity of phenol and methylene blue using activated carbon derived from lignocellulosic agriculture wastes. Sci Rep. 12(1):5499.
  • Elmorsi TM. 2011. Equilibrium isotherms and kinetic studies of removal of methylene blue dye by adsorption onto miswak leaves as a natural adsorbent. J Environ Protect. 2(6):817–827. https://doi.org/10.4236/jep.2011.26093.
  • Ertugay N, Acar FN. 2017. Removal of COD and color from direct blue 71 azo dye wastewater by fenton’s oxidation: kinetic study. Arabian J Chem. 10:1158–1163. https://doi.org/10.1016/j.arabjc.2013.02.009.
  • Fosso-Kankeu E, Reitz M, Waanders F. 2014. Selective adsorption of heavy and light metals by natural zeolites. 6th International Conference on Green Technology, Renewable Energy and Environmental Engineering, Cape Town (SA). p. 167–170.
  • Francis AO, Zaini MAA, Zakaria ZA, Muhammad IM, Abdulsalam S, El-Nafaty AU. 2020. Equilibrium and kinetics of phenol adsorption by crab shell chitosan. Part Sci Technol. 39(6):415–426. https://doi.org/10.1080/02726351.2020.1745975.
  • Francis AO, Zaini MAA, Muhammad IM, Abdulsalam S, El-Nafaty AU. 2020. Methylene blue adsorption onto neem leave/chitosan aggregates: isotherm, kinetics and thermodynamics studies. International Journal of Chemical Reactor Engineering. 18(1):1–16. https://doi.org/10.1515/ijcre-2019-0093.
  • Goswami M, Phukan P. 2017. Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. J Environ Chem Eng. 5:3508–3517. https://doi.org/10.1016/j.jece.2017.07.016.
  • González PG. 2018. Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew Sust Energy Rev. 82(1):1393–1414. https://doi.org/10.1016/j.rser.2017.04.117.
  • Gupta SS, Bhattacharyya KG. 2011. Kinetics of adsorption of metal ions on inorganic materials: a review. Adv Colloid Interface Sci. 162(1–2):39–58. https://doi.org/10.1016/j.cis.2010.12.004.
  • Heidarinejad Z, Rahmanian O, Fazlzadeh M, Heidari M. 2018. Enhancement of methylene blue adsorption onto activated carbon prepared from date press cake by low frequency ultrasound. J Mol Liq. 264:591–599. https://doi.org/10.1016/j.molliq.2018.05.100.
  • Ishak Z, Kumar D. 2022. Adsorption of methylene blue and reactive black 5 by activated carbon derived from tamarind seeds. Trop Aquat Soil Pollut. 2(1):1–12. https://doi.org/10.53623/tasp.v2i1.26.
  • Islam MA, Sabar S, Benhouria A, Khanday WA, Asif M, Hameed BH. 2017. Nanoporous activated carbon prepared from Karanj (Pongamia pinnata) fruit hulls for methylene blue adsorption. J Taiwan Inst Chem Eng. 74:96–104. https://doi.org/10.1016/j.jtice.2017.01.016.
  • Iqbal M, Abbas M, Nisar J, Nazir A, Qamar A. 2019. Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: a review. Chem Int. 5(1):1–80.
  • Jaria G, Calisto V, Gil MV, Otero M, Esteves VI. 2015. Removal of fluoxetine from water by adsorbent materials produced from paper mill sludge. J Colloid Interface Sci. 448:32–40. https://doi.org/10.1016/j.jcis.2015.02.002.
  • Kapooria RG, Aime MC. 2005. Report of oliver scitula on vitex doniana in Zambia. Afr J Sci Technol. 3:57–60.
  • Khadiran T, Hussein MZ, Zainal Z, Rusli R. 2015. Textural and chemical properties of activated carbon prepared from tropical peat soil by chemical activation method. BioResources. 10(1):986–1007.
  • Kheradmand A, Negarestani M, Kazemi S, Shayesteh H, Javanshir S, Ghiasinejad H. 2022. Adsorption behavior of rhamnolipid modified magnetic Co/Al layered double hydroxide for the removal of cationic and anionic dyes. Sci Rep. 12(1):14623.
  • Kongnoo A, Intharapat P, Worathanakul P, Phalakornkule C. 2016. Diethanolamine impregnated palm shell activated carbon for CO2 adsorption at elevated temperature. J Environ Chem Eng. 4(1):73–81. https://doi.org/10.1016/j.jece.2015.11.015.
  • Kouakou YU, Abo EA, Yobouet YA, Trokourey A. 2022. Kinetic and thermodynamic study of the adsorption of methylene blue on activated carbon based on corn cobs. J Mater Environ Sci. 13(4):367–381.
  • Kumar PS, Ramalingam S, Senthamarai C, Niranjanaa M, Vijayalakshmi P, Sivanesan S. 2010. Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. J Desalination. 261:52–60. https://doi.org/10.1016/j.desal.2010.05.032.
  • Li W, Ma T, Zhang R, Tian Y, Qiao Y. 2015. Preparation of porous carbons with high and low pressure CO2 uptake by KOH activation of rice husk char. Fuel. 139:68–70. https://doi.org/10.1016/j.fuel.2014.08.027.
  • Luo L, Wu X, Li Z, Zhou Y, Chen T, Fan M, Zhao W. 2019. Synthesis of activated carbon from biowaste of fir bark for methylene blue removal. R Soc Open Sci. 6(190523):1–14. https://doi.org/10.1098/rsos.190523.
  • Luo XP, Fu SY, Du YM, Guo JZ, Li B. 2017. Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101. Microporous Mesoporous Mater. 237:268–274. https://doi.org/10.1016/j.micromeso.2016.09.032.
  • Marrakchi F, Bouaziz M, Hameed BH. 2017. Activated carbon-clay composite as an effective adsorbent from the spent bleaching sorbent of olive pomace oil: process optimization and adsorption of acid blue 29 and methylene blue. Chem Eng Res Des. 128:221–230. https://doi.org/10.1016/j.cherd.2017.10.015.
  • Marrakchi F, Auta M, Khanday WA, Hameed BH. 2017. High-surface-area and nitrogen-rich mesoporous carbon material from fishery waste for effective adsorption of methylene blue. Powder Technol. 321:428–434. https://doi.org/10.1016/j.powtec.2017.08.023.
  • Mistar EM, Alfatah T, Supardan MD. 2020. Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two-step KOH activation. J Mater Res Technol. 9(3):6278–6286. https://doi.org/10.1016/j.jmrt.2020.03.041.
  • Miyah Y, Idrissi M, Zerrouq F. 2015. Study and modeling of kinetics methylene blue adsorption on the clay adsorbents (pyrophillite, calcite). J Mater Environ Sci. 6(3):699–712.
  • Miyah Y, Lahrichi A, Idrissi M, Khalil A, Zerrouq F. 2018. Adsorption of methylene blue from aqueous solutions onto walnut shells powder: equilibrium and kinetic studies. Surf Interface. 11:74–81. https://doi.org/10.1016/j.surfin.2018.03.006.
  • Mkungunugwa T, Manhokwe S, Chawafambira A, Shumba M. 2021. Synthesis and characterisation of activated carbon obtained from Marula (Sclerocarya birrea) nutshell. J Chem. 2021:1–9. https://doi.org/10.1155/2021/5552224.
  • Naushad M, Alqadami AA, AlOthman ZA, Alsohaimi IH, Algamdi MS, Aldawsari AM. 2019. Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J Mol Liq. 293:111442. https://doi.org/10.1016/j.molliq.2019.111442.
  • Ndukwe GI, Ugboaja AT. 2020. Biodiesel production from Vitex doniana (black plum) seed oil via a two-step catalyzed transesterification. Bull Chem Soc Ethiop. 34(1):75–82. https://doi.org/10.4314/bcse.v34i1.7.
  • Negarestani M, Farimaniraad H, Mollahosseini A, Kheradmand A, Shayesteh H. 2022. Facile preparation of sisal–Fe/Zn layered double hydroxide bio-nanocomposites for the efficient removal of rifampin from aqueous solution: kinetic, equilibrium, and thermodynamic studies. Int J Phytorem. https://doi.org/10.1080/15226514.2022.2093834.
  • Noor NHM, Zaini MAA, Yunus, MAC 2021. Isotherm and kinetics of methylene blue removal by peel adsorbents. Acta Chem Malays. 5(2):63–68.
  • Nowicki P. 2016. Effect of heat treatment on the physicochemical properties of nitrogen enriched activated carbons. J Therm Anal Calorim. 125(3):1017–1024. https://doi.org/10.1007/s10973-016-5254-8.
  • Ohimor EO, Temisa DO, Ononiwu PI. 2021. Production of activated carbon from carbonaceous agricultural waste material: coconut fibres. Niger J Technol. 40(1):19–24. https://doi.org/10.4314/njt.v40i1.4.
  • Okman I, Selhan K, Tay T, Erdem M. 2014. Activated carbons from grape seeds by chemical activation with potassium carbonate and potassium hydroxide. Appl Surf Sci. 293:138–142. https://doi.org/10.1016/j.apsusc.2013.12.117.
  • Pandey S, Do JY, Kim J, Kang M. 2020. Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst. Carbohydr Polym. 230:115597. https://doi.org/10.1016/j.carbpol.2019.115597.
  • Piriya RS, Jayabalakrishnan RM, Maheswari M, Boomiraj K, Oumabady S. 2021. Coconut shell derived ZnCl2 activated carbon for malachite green dye removal. Water Sci Technol. 83:1167–1182. https://doi.org/10.2166/wst.2021.050.
  • Priyanka M, Saravanakumar MP. 2018. Ultrahigh adsorption capacity of starch derived zinc-based carbon foam for adsorption of toxic dyes and its preliminary investigation on oil-water separation. J Clean Prod. 197:511–524. https://doi.org/10.1016/j.jclepro.2018.06.197.
  • Rangabhashiyam S, Selvaraju N. 2015. Adsorptive remediation of hexavalent chromium from synthetic wastewater by a natural and ZnCl2 activated Sterculia guttata shell. J Mol Liq. 207:39–49. https://doi.org/10.1016/j.molliq.2015.03.018.
  • Sethia G, Sayari A. 2021. Activated carbon with optimum pore size distribution for hydrogen storage. Niger J Technol. 99:289–294.
  • Singh G, Kim IY, Lakhi KS, Srivastava P, Naidu R, Vinu A. 2017. Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity. Carbon. 116:448–455. https://doi.org/10.1016/j.carbon.2017.02.015.
  • Shayesteh H, Ashrafi A, Rahbar-Kelishami A. 2017. Evaluation of Fe3O4@ MnO2 core-shell magnetic nanoparticles as an adsorbent for decolorization of methylene blue dye in contaminated water: synthesis and characterization, kinetic, equilibrium, and thermodynamic studies. J Mol Struct. 1149:199–205. https://doi.org/10.1016/j.molstruc.2017.07.100.
  • Thakur S, Pandey S, Arotiba OA. 2016. Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr Polym. 153:34–46. https://doi.org/10.1016/j.carbpol.2016.06.104.
  • Thang NH, Khang DS, Hai TD, Nga DT, Tuan PD. 2021. Methylene blue adsorption mechanism of activated carbon synthesized from cashew nut shells. RSC Adv. 11(43):26563–26570. https://doi.org/10.1039/D1RA04672A.
  • Thommes M, Kaneko K, Neimark AV, Olivier JP, Reinoso FR, Rouquerol J, et al. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 87:1051–1069. https://doi.org/10.1515/pac-2014-1117.
  • Velusamy S, Roy A, Sundaram S, Kumar Mallick T. 2021. A review on heavy metal ions and containing dyes removal through graphene oxide‐based adsorption strategies for textile wastewater treatment. Chem Record. 21(7):1570–1610. https://doi.org/10.1002/tcr.202000153.
  • Vhahangwele M, Mugera GW. 2015. The potential of ball-milled South African bentonite clay for attenuation of heavy metals from acidic wastewater: simultaneous sorption of CO2+, Cu2+, Ni2+, Pb2+ and Zn2+ ions. J Environ Chem Eng. 3(4):2416–2425. https://doi.org/10.1016/j.jece.2015.08.016.
  • Villarante NR, Bautista APR, Sumalapao, DEP 2017. Batch adsorption study and kinetic profile of Cr(VI) using lumbang (Aleurites moluccana) - derived activated carbon-chitosan composite crosslinked with epichlorhydrin. Orient J Chem. 33(3):111–1119.
  • Wang F, Zhang L, Wang Y, Liu X, Rohani S, Lu J. 2017. Fe3O4 @ SiO2 @ CS-TETA functionalized graphene oxide for the adsorption of methylene blue (MB) and Cu(II). Appl Surf Sci. 420:970–981. https://doi.org/10.1016/j.apsusc.2017.05.179.
  • Yusuf J, Muhammed M, Grace BT. 2020. Preparation of activated carbon from syzygiumcumini seed for the removal of chromium (II) ion from aqueous solution. Bayero J Pure Appl Sci. 13(1):158–163. https://doi.org/10.4314/bajopas.v13i1.22.
  • Zaini MAA, Shu-Hui T, Lin-Zhi L, Alias N. 2016. Fate of chemical activators in the aqueous environment: what should we do about it? Aceh Int J Sci Technol. 5(1):18–20. https://doi.org/10.13170/aijst.5.1.3840.
  • Zhang S, Zhu S, Zhang H, Liu X, Xiong Y. 2020. Synthesis and characterization of rice husk-based magnetic porous carbon by pyrolysis of pretreated rice husk with FeCl3 and ZnCl2. J Anal Appl Pyrolysis. 147:104806. https://doi.org/10.1016/j.jaap.2020.104806.
  • Zhao H, Zhong H, Jiang Y, Li H, Tang P, Li D, Feng Y. 2022. Porous ZnCl2-activated carbon from shaddock peel: methylene blue adsorption behavior. Materials. 15(895):1–16. https://doi.org/10.3390/ma15030895.
  • Zhao W, Luo L, Wang H, Fan M. 2017. Synthesis of bamboo-based activated carbo ns with super-high specific surface area for hydrogen storage. Bioresources. 12:1246–1262. https://doi.org/10.15376/biores.12.1.1246-1262.
  • Zhao W, Luo L, Chen T, Li Z, Zhang Z, Fan M. 2018. Activated carbon from oil palm shell for hydrogen storage. Mater Sci Eng. 368:012–031. https://doi.org/10.1088/1757-899X/368/1/012031.
  • Zhu X, Wang P, Peng C, Yang J, Yan X. 2014. Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents. Chin Chem Lett. 25:929–932. https://doi.org/10.1016/j.cclet.2014.03.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.