301
Views
3
CrossRef citations to date
0
Altmetric
Research Article

An efficient biosorbent material for green remediation of contaminated water medium

&

References

  • Ahmad MA, Eusoff MA, Adegoke KA, Bello OS. 2021. Sequestration of methylene blue dye from aqueous solution using microwave assisted dragon fruit peel as adsorbent. Environ Technol Innov. 24:101917. doi:10.1016/j.eti.2021.101917.
  • Akar T, Anilan B, Gorgulu A, Tunali Akar S. 2009. Assessment of cationic dye biosorption characteristics of untreated and non-conventional biomass: Pyracantha coccinea berries. J Hazard Mater. 168(2–3):1302–1309. doi:10.1016/j.jhazmat.2009.03.011.
  • Akar T, Celik S, Tunali Akar S. 2010. Biosorption performance of surface modified biomass obtained from Pyracantha coccinea for the decolorization of dye contaminated solutions. Chem Eng J. 160(2):466–472. doi:10.1016/j.cej.2010.03.047.
  • Akar T, Ozkara E, Celik S, Turkyilmaz S, Tunali Akar S. 2013. Chemical modification of a plant origin biomass using cationic surfactant ABDAC and the biosorptive decolorization of RR45 containing solutions. Colloids Surf B Biointerfaces. 101:307–314. doi:10.1016/j.colsurfb.2012.06.016.
  • Al-Absi RS, Abu-Dieyeh MH, Ben-Hamadou R, Nasser MS, Al-Ghouti MA. 2022. Thermodynamics, isotherms, and mechanisms studies of lithium recovery from seawater desalination reverse osmosis brine using roasted and ferrocyanide modified date pits. Environ Technol Innov. 25:102148. doi:10.1016/j.eti.2021.102148.
  • Al-Ajji MA, Al-Ghouti MA. 2021. Novel insights into the nanoadsorption mechanisms of crystal violet using nano-hazelnut shell from aqueous solution. J Water Process Eng. 44:102354. doi:10.1016/j.jwpe.2021.102354.
  • Al-Musawi TJ, McKay G, Rajiv P, Mengelizadeh N, Balarak D. 2022. Efficient sonophotocatalytic degradation of acid blue 113 dye using a hybrid nanocomposite of CoFe2O4 nanoparticles loaded on multi-walled carbon nanotubes. J Photochem Photobiol A. 424:113617. doi:10.1016/j.jphotochem.2021.113617.
  • Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, Jiao H, Fu Y, Sun J. 2022. A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf. 231:113160.
  • Alamin NU, Khan AS, Nasrullah A, Iqbal J, Ullah Z, Din IU, Muhammad N, Khan SZ. 2021. Activated carbon-alginate beads impregnated with surfactant as sustainable adsorbent for efficient removal of methylene blue. Int J Biol Macromol. 176:233–243. doi:10.1016/j.ijbiomac.2021.02.017.
  • Bal G, Thakur A. 2022. Distinct approaches of removal of dyes from wastewater: a review. Mater Today Proc. 50:1575–1579. doi:10.1016/j.matpr.2021.09.119.
  • de Salomón YLO, Georgin J, Franco DSP, Netto MS, Foletto EL, Allasia D, Dotto GL. 2021. Application of seed residues from Anadenanthera macrocarpa and Cedrela fissilis as alternative adsorbents for remarkable removal of methylene blue dye in aqueous solutions. Environ Sci Pollut Res. 28(2):2342–2354. doi:10.1007/s11356-020-10635-0.
  • Deniz F, Kepekci RA. 2017. Efficiency of modified composite biosorbent for bioremoval of phosphate ions in aqueous area: process modeling studies. J Polym Environ. 25(3):649–657. doi:10.1007/s10924-016-0852-x.
  • Dong C, Li X, Xi Y, Cheng Z-M. 2017. Micropropagation of Pyracantha coccinea. HortScience. 52(2):271–273. doi:10.21273/HORTSCI11301-16.
  • dos Santos Escobar O, Ferraz de Azevedo C, Swarowsky A, Adebayo MA, Schadeck Netto M, Machado Machado F. 2021. Utilization of different parts of Moringa oleifera Lam. seeds as biosorbents to remove Acid Blue 9 synthetic dye. J Environ Chem Eng. 9(4):105553. doi:10.1016/j.jece.2021.105553.
  • Drumm FC, Franco DSP, Georgin J, Grassi P, Jahn SL, Dotto GL. 2021. Macro-fungal (Agaricus bisporus) wastes as an adsorbent in the removal of the acid red 97 and crystal violet dyes from ideal colored effluents. Environ Sci Pollut Res. 28(1):405–415. doi:10.1007/s11356-020-10521-9.
  • Dubinin MM, Radushkevich LV. 1947. Equation of the characteristic curve of activated charcoal. Proc Acad Sci Phys Chem Sec USSR. 55:331–333.
  • El Gaayda J, Akbour RA, Titchou FE, Afanga H, Zazou H, Swanson C, Hamdani M. 2021. Uptake of an anionic dye from aqueous solution by aluminum oxide particles: equilibrium, kinetic, and thermodynamic studies. Groundw Sustain Dev. 12:100540. doi:10.1016/j.gsd.2020.100540.
  • Essekri A, Hsini A, Naciri Y, Laabd M, Ajmal Z, El Ouardi M, Ait Addi A, Albourine A. 2021. Novel citric acid-functionalized brown algae with a high removal efficiency of crystal violet dye from colored wastewaters: insights into equilibrium, adsorption mechanism, and reusability. Int J Phytorem. 23(4):336–346. doi:10.1080/15226514.2020.1813686.
  • Fang Y, Liu Q, Zhu S. 2021. Selective biosorption mechanism of methylene blue by a novel and reusable sugar beet pulp cellulose/sodium alginate/iron hydroxide composite hydrogel. Int J Biol Macromol. 188:993–1002. doi:10.1016/j.ijbiomac.2021.07.192.
  • Freundlich HMF. 1906. Over the adsorption in solution. Z Phys Chem. 57:385–470.
  • Garg A, Chopra L. 2022. Dye waste: a significant environmental hazard. Mater Today Proc. 48:1310–1315. doi:10.1016/j.matpr.2021.09.003.
  • Giri BS, Sonwani RK, Varjani S, Chaurasia D, Varadavenkatesan T, Chaturvedi P, Yadav S, Katiyar V, Singh RS, Pandey A. 2022. Highly efficient bio-adsorption of Malachite green using Chinese Fan-Palm Biochar (Livistona chinensis). Chemosphere. 287(Pt 3):132282. doi:10.1016/j.chemosphere.2021.132282.
  • Gorgulu Ari A, Celik S. 2013. Biosorption potential of Orange G dye by modified Pyracantha coccinea: batch and dynamic flow system applications. Chem Eng J. 226:263–270. doi:10.1016/j.cej.2013.04.073.
  • Hakeim OA, Abdelghaffar F, El-Gabry LK. 2022. Investigation of Egyptian Chorisia spp. fiber as a natural sorbent for oil spill cleanup. Environ Technol Innov. 25:102134. doi:10.1016/j.eti.2021.102134.
  • Ho YS. 2006. Review of second-order models for adsorption systems. J Hazard Mater. 136(3):681–689. doi:10.1016/j.jhazmat.2005.12.043.
  • Iqbal J, Shah NS, Sayed M, Niazi NK, Imran M, Khan JA, Khan ZUH, Hussien AGS, Polychronopoulou K, Howari F. 2021. Nano-zerovalent manganese/biochar composite for the adsorptive and oxidative removal of Congo-red dye from aqueous solutions. J Hazard Mater. 403:123854.
  • Jóźwiak T, Filipkowska U, Struk-Sokołowska J, Bryszewski K, Trzciński K, Kuźma J, Ślimkowska M. 2021. The use of spent coffee grounds and spent green tea leaves for the removal of cationic dyes from aqueous solutions. Sci Rep. 11(1):9584. doi:10.1038/s41598-021-89095-6.
  • Kausar A, Zohra ST, Ijaz S, Iqbal M, Iqbal J, Bibi I, Nouren S, El Messaoudi N, Nazir A. 2023. Cellulose-based materials and their adsorptive removal efficiency for dyes: a review. Int J Biol Macromol. 224:1337–1355. doi:10.1016/j.ijbiomac.2022.10.220.
  • Khataee AR, Vafaei F, Jannatkhah M. 2013. Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp. kinetic, isotherm and thermodynamic studies. Int Biodeterior Biodegrad. 83:33–40. doi:10.1016/j.ibiod.2013.04.004.
  • Kiani Ghaleh Sardi F, Behpour M, Ramezani Z, Masoum S. 2021. Simultaneous removal of Basic Blue41 and Basic Red46 dyes in binary aqueous systems via activated carbon from palm bio-waste: optimization by central composite design, equilibrium, kinetic, and thermodynamic studies. Environ Technol Innov. 24:102039. doi:10.1016/j.eti.2021.102039.
  • Lagergren S. 1898. About the theory of so-called adsorptıon of soluble substances. K Sven Vetenskapsakad Handl. 24:1–39.
  • Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 40(9):1361–1403. doi:10.1021/ja02242a004.
  • Lee XJ, Ong HC, Ooi J, Yu KL, Tham TC, Chen W-H, Ok YS. 2022. Engineered macroalgal and microalgal adsorbents: synthesis routes and adsorptive performance on hazardous water contaminants. J Hazard Mater. 423(Pt A):126921. doi:10.1016/j.jhazmat.2021.126921.
  • Nakamura T, Mishima S, Ogata F, Kawasaki N. 2022. Characteristics of 21 types of tea waste for adsorbance of ionic dyes from aqueous solutions. Chem Pharm Bull. 70(4):254–260. doi:10.1248/cpb.c21-00973.
  • Paredes-Quevedo LC, Castellanos NJ, Carriazo JG. 2021. Influence of porosity and surface area of a modified kaolinite on the adsorption of Basic Red 46 (BR-46). Water Air Soil Pollut. 232(12):509. doi:10.1007/s11270-021-05450-3.
  • Paul Nayagam JO, Prasanna K. 2022. Utilization of shell-based agricultural waste adsorbents for removing dyes: a review. Chemosphere. 291(Pt 1):132737. doi:10.1016/j.chemosphere.2021.132737.
  • Praveen S, Jegan J, Bhagavathi Pushpa T, Gokulan R, Bulgariu L. 2022. Biochar for removal of dyes in contaminated water: an overview. Biochar. 4(1):10. doi:10.1007/s42773-022-00131-8.
  • Rangabhashiyam S, Lins P, Oliveira L, Sepulveda P, Ighalo JO, Rajapaksha AU, Meili L. 2022. Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: a critical review. Environ Pollut. 293:118581. doi:10.1016/j.envpol.2021.118581.
  • Rasoulifard MH, Heidari O, Mohammadi N, Heidari A. 2021. Continuous removal of Basic Red 46 from aqueous solutions using modified Portland cement in column study. Int J Environ Sci Technol. 18(3):647–658. doi:10.1007/s13762-020-02841-7.
  • Sackey EA, Song Y, Yu Y, Zhuang H. 2021. Biochars derived from bamboo and rice straw for sorption of basic red dyes. PLOS One. 16(7):e0254637. doi:10.1371/journal.pone.0254637.
  • Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Harikumar P, Priyanka G, Devakirubai DRA. 2022. A comprehensive review on sources, analysis and toxicity of environmental pollutants and its removal methods from water environment. Sci Total Environ. 812:152456. doi:10.1016/j.scitotenv.2021.152456.
  • Saravanan P, Josephraj J, Pushpa Thillainayagam B. 2021. A comprehensive analysis of biosorptive removal of basic dyes by different biosorbents. Environ Nanotechnol Monit Manage. 16:100560. doi:10.1016/j.enmm.2021.100560.
  • Sharma G, Khosla A, Kumar A, Kaushal N, Sharma S, Naushad M, Vo D-VN, Iqbal J, Stadler FJ. 2022. A comprehensive review on the removal of noxious pollutants using carrageenan based advanced adsorbents. Chemosphere. 289:133100. doi:10.1016/j.chemosphere.2021.133100.
  • Singh A, Pal DB, Kumar S, Srivastva N, Syed A, Elgorban AM, Singh R, Gupta VK. 2021. Studies on Zero-cost algae based phytoremediation of dye and heavy metal from simulated wastewater. Bioresour Technol. 342:125971. doi:10.1016/j.biortech.2021.125971.
  • Sutirman ZA, Sanagi MM, Aini WIW. 2021. Alginate-based adsorbents for removal of metal ions and radionuclides from aqueous solutions: a review. Int J Biol Macromol. 174:216–228. doi:10.1016/j.ijbiomac.2021.01.150.
  • Tan KL, Hameed BH. 2017. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng. 74:25–48. doi:10.1016/j.jtice.2017.01.024.
  • Thirunavukkarasu A, Nithya R, Sivashankar R. 2021. Continuous fixed-bed biosorption process: a review. Chem Eng J Adv. 8:100188. doi:10.1016/j.ceja.2021.100188.
  • Ting ASY, Cheng CKW, Santiago KAA. 2021. Decolourization of malachite green dye by endolichenic fungi from the lichen Usnea sp.: a novel study on their dye removal potential. J King Saud Univ Sci. 33(7):101579. doi:10.1016/j.jksus.2021.101579.
  • Tunali Akar S, Sayin F, Turkyilmaz S, Akar T. 2014. Multivariate optimization of the decolorization process by surface modified biomaterial: Box–Behnken design and mechanism analysis. Environ Sci Pollut Res. 21(22):13055–13068. doi:10.1007/s11356-014-3245-5.
  • Ulmer R, Couty A, Eslin P, Gabola F, Chabrerie O. 2020. The firethorn (Pyracantha coccinea), a promising dead-end trap plant for the biological control of the spotted-wing Drosophila (Drosophila suzukii). Biol Control. 150:104345. doi:10.1016/j.biocontrol.2020.104345.
  • Vélez-Gavilán J. 2020. Pyracantha coccinea (Scarlet Firethorn). Wallingford: CABI Publishing. cabi.org/isc/datasheet/45994
  • Vij RK, Janani VA, Subramanian D, Mistry CR, Devaraj G, Pandian S. 2021. Equilibrium, kinetic and thermodynamic studies for the removal of Reactive Red dye 120 using Hydrilla verticillata biomass: a batch and column study. Environ Technol Innov. 24:102009. doi:10.1016/j.eti.2021.102009.
  • Wang F, Li L, Iqbal J, Yang Z, Du Y. 2022. Preparation of magnetic chitosan corn straw biochar and its application in adsorption of amaranth dye in aqueous solution. Int J Biol Macromol. 199:234–242.
  • Weber WJ, Morris JC. 1963. Kinetics of adsorption on carbon from solution. J Sanit Engrg Div. 89(2):31–59. doi:10.1061/JSEDAI.0000430.
  • Wiśniewska M, Chibowski S, Wawrzkiewicz M, Onyszko M, Bogatyrov V. 2022. C.I. Basic Red 46 removal from sewage by carbon and silica based composite: equilibrium, kinetic and electrokinetic studies. Molecules. 27(3):1043. doi:10.3390/molecules27031043.
  • Yaashikaa PR, Kumar PS, Saravanan A, Vo D-VN. 2021. Advances in biosorbents for removal of environmental pollutants: a review on pretreatment, removal mechanism and future outlook. J Hazard Mater. 420:126596. doi:10.1016/j.jhazmat.2021.126596.
  • Yang X, Zhu W, Song Y, Zhuang H, Tang H. 2021. Removal of cationic dye BR46 by biochar prepared from Chrysanthemum morifolium Ramat straw: a study on adsorption equilibrium, kinetics and isotherm. J Mol Liq. 340:116617. doi:10.1016/j.molliq.2021.116617.
  • You X, Wang R, Zhu Y, Sui W, Cheng D. 2021. Comparison of adsorption properties of a cellulose-rich modified rice husk for the removal of methylene blue and aluminum (III) from their aqueous solution. Ind Crops Prod. 170:113687. doi:10.1016/j.indcrop.2021.113687.
  • Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, Zamora-Ledezma E, Ni M, Alexis F, Guerrero VH. 2021. Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environ Technol Innov. 22:101504. doi:10.1016/j.eti.2021.101504.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.