2,229
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ex situ bioremediation of diesel fuel-contaminated soil in two different climates

ORCID Icon, , & ORCID Icon

References

  • Agnihotri R, Gujre N, Mitra S, Sharma MP. 2023. Decoding the PLFA profiling of microbial community structure in soils contaminated with municipal solid wastes. Environ Res. 219:114993. doi:10.1016/j.envres.2022.114993.
  • Azubuike CC, Chikere CB, Okpokwasili GC. 2016. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol. 32(11):180. doi:10.1007/s11274-016-2137-x.
  • Balseiro-Romero M, Monterroso C, Casares JJ. 2018. Environmental fate of petroleum hydrocarbons in soil: review of multiphase transport, mass transfer, and natural attenuation processes. Pedosphere. 28(6):833–847. doi:10.1016/S1002-0160(18)60046-3.
  • Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 37(8):911–917. doi:10.1139/o59-099.
  • Bloem J, Hopkins D, Benedetti A. 2006. Microbiological methods for assessing soil quality. Wallingford: CABI.
  • Covino S, Fabianová T, Křesinová Z, Čvančarová M, Burianová E, Filipová A, Vořísková J, Baldrian P, Cajthaml T. 2016. Polycyclic aromatic hydrocarbons degradation and microbial community shifts during co-composting of creosote-treated wood. J Hazard Mater. 301:17–26. doi:10.1016/j.jhazmat.2015.08.023.
  • Darko O. 1996. Podnebni tipi v Sloveniji. Geografski vestnik. 68:39–56.
  • Decree on burdening of soil with waste spreading Uradni list RS, št. 34/08 in 61/11. 2008. vol Uradni list RS, št. 34/08 in 61/11. Uradni list Republike Slovenije.
  • Frostegård Å, Bååth E, Tunlio A. 1993. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology and Biochemistry. 25(6):723–730. doi:10.1016/0038-0717(93)90113-P.
  • Hedrick DB, Peacock A, White DC. 2005. Interpretation of fatty acid profiles of soil microorganisms. In: Margesin R, Schinner F, editors. Monitoring and assessing soil bioremediation. Berlin, Heidelberg: Springer Berlin Heidelberg; p. 251–259. doi:10.1007/3-540-28904-6_12.
  • Hoang SA, Lamb D, Seshadri B, Sarkar B, Cheng Y, Wang L, Bolan NS. 2021. Petroleum hydrocarbon rhizoremediation and soil microbial activity improvement via cluster root formation by wild proteaceae plant species. Chemosphere. 275:130135. doi:10.1016/j.chemosphere.2021.130135.
  • Hoang SA, Lamb D, Seshadri B, Sarkar B, Choppala G, Kirkham MB, Bolan NS. 2021. Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon-contaminated soils. J Hazard Mater. 401:123282. doi:10.1016/j.jhazmat.2020.123282.
  • Johnsen AR, Boe US, Henriksen P, Malmquist LMV, Christensen JH. 2021. Full-scale bioremediation of diesel-polluted soil in an Arctic landfarm. Environ Pollut. 280:116946. doi:10.1016/j.envpol.2021.116946.
  • Kafle A, Timilsina A, Gautam A, Adhikari K, Bhattarai A, Aryal N. 2022. Phytoremediation: mechanisms, plant selection and enhancement by natural and synthetic agents. Environ Adv. 8:100203. doi:10.1016/j.envadv.2022.100203.
  • Kästner M, Miltner A. 2016. Application of compost for effective bioremediation of organic contaminants and pollutants in soil. Appl Microbiol Biotechnol. 100(8):3433–3449. doi:10.1007/s00253-016-7378-y.
  • Kozjek K, Dolinar M, Skok G. 2017. Objective climate classification of Slovenia. Int J Climatol. 37(S1):848–860. doi:10.1002/joc.5042.
  • Langarica-Fuentes A, Zafar U, Heyworth A, Brown T, Fox G, Robson GD. 2014. Fungal succession in an in-vessel composting system characterized using 454 pyrosequencing. FEMS Microbiol Ecol. 88(2):296–308. doi:10.1111/1574-6941.12293.
  • Li X, Fan F, Zhang B, Zhang K, Chen B. 2018. Biosurfactant enhanced soil bioremediation of petroleum hydrocarbons: design of experiments (DOE) based system optimization and phospholipid fatty acid (PLFA) based microbial community analysis. Int Biodeterior Biodegrad. 132:216–225. doi:10.1016/j.ibiod.2018.04.009.
  • Lopez-Echartea E, Strejcek M, Mukherjee S, Uhlik O, Yrjälä K. 2020. Bacterial succession in oil-contaminated soil under phytoremediation with poplars. Chemosphere. 243:125242. doi:10.1016/j.chemosphere.2019.125242.
  • Margesin R, Hämmerle M, Tscherko D. 2007. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time. Microb Ecol. 53(2):259–269. doi:10.1007/s00248-006-9136-7.
  • Miller JN, Miller JC. 2018. Statistics and chemometrics for analytical chemistry. 7th ed. Harlow: Pearson.
  • MOP. 2013. Decree on the treatment of biodegradable waste and the use of compost or digestate. (Uradni list RS, št. 99/13, 56/15, 56/18 in 44/22 – ZVO-2). doi:http://www.pisrs.si/Pis.web/pregledPredpisa?id=URED6281.
  • MOP. 2019. Rules on soil quality monitoring. (Uradni list RS, št. 68/19 in 44/22 – ZVO-2) doi:http://www.pisrs.si/Pis.web/pregledPredpisa?id=PRAV12716.
  • Nakase G, Eguchi M. 2015. Influence of seasonal solar ultraviolet radiation on microbial mineralization activity in tidal flats in Osaka Bay, Japan. Fish Sci. 81(6):1099–1104. doi:10.1007/s12562-015-0927-y.
  • Orwin KH, Dickie IA, Holdaway R, Wood JR. 2018. A comparison of the ability of PLFA and 16S rRNA gene metabarcoding to resolve soil community change and predict ecosystem functions. Soil Biology and Biochemistry. 117:27–35. doi:10.1016/j.soilbio.2017.10.036.
  • Ossai IC, Ahmed A, Hassan A, Hamid FS. 2020. Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov. 17:100526. doi:10.1016/j.eti.2019.100526.
  • Ridl J, Kolar M, Strejcek M, Strnad H, Stursa P, Paces J, Macek T, Uhlik O. 2016. Plants rather than mineral fertilization shape microbial community structure and functional potential in legacy contaminated soil. Front Microbiol. 7:995–995. doi:10.3389/fmicb.2016.00995.
  • Rodriguez-Campos J, Perales-Garcia A, Hernandez-Carballo J, Martinez-Rabelo F, Hernández-Castellanos B, Barois I, Contreras-Ramos SM. 2019. Bioremediation of soil contaminated by hydrocarbons with the combination of three technologies: bioaugmentation, phytoremediation, and vermiremediation. J Soils Sediments. 19(4):1981–1994. doi:10.1007/s11368-018-2213-y.
  • Saravanan A, Jeevanantham S, Narayanan VA, Kumar PS, Yaashikaa PR, Muthu CMM. 2020. Rhizoremediation – a promising tool for the removal of soil contaminants: a review. J Environ Chem Eng. 8(2):103543. doi:10.1016/j.jece.2019.103543.
  • Shen W, Zhu N, Cui J, Wang H, Dang Z, Wu P, Luo Y, Shi C. 2016. Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation. Ecotoxicol Environ Saf. 124:120–128. doi:10.1016/j.ecoenv.2015.10.005.
  • Stegmann R, Brunner G, Calmano W, Matz G. 2001. Treatment of contaminated soil: fundamentals, analysis, applications. Cham: Springer. doi:10.1007/978-3-662-04643-2.
  • Suding KN, Gross KL, Houseman GR. 2004. Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol. 19(1):46–53. doi:10.1016/j.tree.2003.10.005.
  • Tischer S, Hübner T. 2002. Model trials for phytoremediation of hydrocarbon-contaminated sites by the use of different plant species. Int J Phytoremediation. 4(3):187–203. doi:10.1080/15226510208500082.
  • Tran H-T, Lin C, Bui X-T, Ngo H-H, Cheruiyot NK, Hoang H-G, Vu C-T. 2021. Aerobic composting remediation of petroleum hydrocarbon-contaminated soil. Current and future perspectives. Sci Total Environ. 753:142250. doi:10.1016/j.scitotenv.2020.142250.
  • Vasilyeva G, Kondrashina V, Strijakova E, Ortega-Calvo J-J. 2020. Adsorptive bioremediation of soil highly contaminated with crude oil. Sci Total Environ. 706:135739. doi:10.1016/j.scitotenv.2019.135739.
  • Vrščaj B, Repe B, Simončič P. 2017. The soils of Slovenia. Cham: Springer. doi:10.1007/978-94-017-8585-3.
  • Willers C, Jansen van Rensburg PJ, Claassens S. 2015a. Microbial signature lipid biomarker analysis - an approach that is still preferred, even amid various method modifications. J Appl Microbiol. 118(6):1251–1263. doi:10.1111/jam.12798.
  • Willers C, Jansen van Rensburg PJ, Claassens S. 2015b. Phospholipid fatty acid profiling of microbial communities–a review of interpretations and recent applications. J Appl Microbiol. 119(5):1207–1218. doi:10.1111/jam.12902.
  • Wu M, Li W, Dick WA, Ye X, Chen K, Kost D, Chen L. 2017. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere. 169:124–130. doi:10.1016/j.chemosphere.2016.11.059.
  • Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang P, Gao X, Li F, Li H, Yu H. 2018. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front Microbiol. 9(:2885. doi:10.3389/fmicb.2018.02885.
  • Yanxu W, Oyaizu H. 2009. Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil. J Hazard Mater. 168(2–3):760–764. doi:10.1016/j.jhazmat.2009.02.082.
  • Zhang Y, Zheng N, Wang J, Yao H, Qiu Q, Chapman SJ. 2019. High turnover rate of free phospholipids in soil confirms the classic hypothesis of PLFA methodology. Soil Biol Biochem. 135:323–330. doi:10.1016/j.soilbio.2019.05.023.