398
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative efficacy of Parthenium hysterophorus (L.) derived biochar and iron doped zinc oxide nanoparticle on heavy metals (HMs) mobility and its uptake by Triticum aestivum (L.) in chromite mining contaminated soils

, , , , &

References

  • Abbas Q, Yousaf B, Liu G, Zia-Ur-Rehman M, Ali MU, Munir MAM, Hussain SA. 2017. Evaluating the health risks of potentially toxic elements through wheat consumption in multi-industrial metropolis of Faisalabad, Pakistan. Environ Sci Pollut Res Int. 24(34):26646–26657. doi:10.1007/s11356-017-0311-9.
  • Abbas Q, Yousaf B, Munir MAM, Cheema AI, Hussain I, Rinklebe J. 2021. Biochar-mediated transformation of titanium dioxide nanoparticles concerning TiO2NPs-biochar interactions, plant traits and tissue accumulation to cell translocation. Environ Pollut. 270:116077. doi:10.1016/j.envpol.2020.116077.
  • Abbas T, Rizwan M, Ali S, Adrees M, Mahmood A, Zia-Ur-Rehman M, Ibrahim M, Arshad M, Qayyum MF. 2018. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol Environ Saf. 148:825–833. doi:10.1016/j.ecoenv.2017.11.063.
  • Abdin Y, Usman A, Ok YS, Tsang YF, Al-Wabel M. 2020. Competitive sorption and availability of coexisting heavy metals in mining-contaminated soil: contrasting effects of mesquite and fishbone. Environ Res. 181:108846. doi:10.1016/j.envres.2019.108846.
  • Ajmal Z, Kashif Irshad M, Qadeer A, Zia Ul Haq M, Ullah R, Aqeel Sarwar M, Saeed T, Abid M, Hayat A, Ali A, et al. 2022. Novel magnetite nano-rods-modified biochar: a promising strategy to control lead mobility and transfer in soil-rice system. Int J Environ Sci Technol. doi:10.1007/s13762-022-04452-w.
  • Alaboudi KA, Ahmed B, Brodie G. 2019. Effect of biochar on Pb, Cd and Cr availability and maize growth in artificial contaminated soil. Ann Agric Sci. 64(1):95–102. doi:10.1016/j.aoas.2019.04.002.
  • Arshad M, Khan AHI, Hussain I, Zaman B, Anees M, Iqbal M, Soja G, Linde C, Yousaf S. 2017. The reduction of chromium (VI) phytotoxicity and phytoavailability to wheat (Triticum aestivum L.) using biochar and bacteria. Appl Soil Ecol. 114:90–98. doi:10.1016/j.apsoil.2017.02.021.
  • Awan SA, Khan I, Rizwan M, Ali Z, Ali S, Khan N, Arumugam N, Almansour AI, Ilyas N. 2022. A new technique for reducing accumulation, transport, and toxicity of heavy metals in wheat (Triticum aestivum L.) by bio-filtration of river wastewater. Chemosphere. 294:133642. doi:10.1016/j.chemosphere.2022.133642.
  • Azeem M, Ali A, Arockiam Jeyasundar PGS, Bashir S, Hussain Q, Wahid F, Ali EF, Abdelrahman H, Li R, Antoniadis V, et al. 2021. Effects of sheep bone biochar on soil quality, maize growth, and fractionation and phytoavailability of Cd and Zn in a mining-contaminated soil. Chemosphere. 282:131016. doi:10.1016/j.chemosphere.2021.131016.
  • Banerjee P, Chakrabarti S, Maitra S, Dutta BK. 2012. Zinc oxide nano-particles-sonochemical synthesis, characterization and application for photo-remediation of heavy metal. Ultrason Sonochem. 19(1):85–93. doi:10.1016/j.ultsonch.2011.05.007.
  • Bashir A, Ur Rehman MZ, Hussaini KM, Adrees M, Qayyum MF, Sayal AU, Rizwan M, Ali S, Alsahli AA, Alyemeni MN. 2021. Combined use of zinc nanoparticles and co-composted biochar enhanced wheat growth and decreased Cd concentration in grains under Cd and drought stress: a field study. Environ Technol Innov. 23:101518. doi:10.1016/j.eti.2021.101518.
  • Bashir S, Salam A, Chhajro MA, Fu Q, Khan MJ, Zhu J, Shaaban M, Kubar KA, Ali U, Hu H. 2018. Comparative efficiency of rice husk-derived biochar (RHB) and steel slag (SS) on cadmium (Cd) mobility and its uptake by Chinese cabbage in highly contaminated soil. Int J Phytoremediation. 20(12):1221–1228. doi:10.1080/15226514.2018.1448364.
  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T. 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut. 159(12):3269–3282. doi:10.1016/j.envpol.2011.07.023.
  • CEM. 2019. MARS 6. Method Note Compendium [accessed 2020 Oct 15]. https://cem.com/mars-6-method note-compendium.
  • CEPA. 1995. Environmental quality standard for soils (GB15618-1995). Beijing: CEPA.
  • Chen F, Bashir A, Zia Ur Rehman M, Adrees M, Qayyum MF, Ma J, Rizwan M, Ali S. 2022. Combined effects of green manure and zinc oxide nanoparticles on cadmium uptake by wheat (Triticum aestivum L.). Chemosphere. 298:134348. doi:10.1016/j.chemosphere.2022.134348.
  • Dimkpa CO, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC. 2019. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci Total Environ. 688:926–934. doi:10.1016/j.scitotenv.2019.06.392.
  • Dong H, Deng J, Xie Y, Zhang C, Jiang Z, Cheng Y, Hou K, Zeng G. 2017. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr (VI) removal from aqueous solution. J Hazard Mater. 332:79–86. doi:10.1016/j.jhazmat.2017.03.002.
  • El-Naggar A, Ahmed N, Mosa A, N NK, Yousaf B, Sharm A, Sarkar B, Cai Y, Chang SX. 2021. Nickel in soil and water: sources, biogeochemistry, and remediation using biochar. J Hazard Mater. 419:126421. doi:10.1016/j.jhazmat.2021.126421.
  • Feng Y, Liu P, Wang Y, Finfrock YZ, Xie X, Su C, Liu N, Yang Y, Xu Y. 2020. Distribution and speciation of iron in Fe-modified biochars and its application in removal of As(V), As(III), Cr(VI), and Hg(II): An X-ray absorption study. J Hazard Mater. 384:121342. doi:10.1016/j.jhazmat.2019.121342.
  • Forján R, Rodríguez-Vila A, Cerqueira B, Covelo E. 2018. Comparison of compost with biochar versus technosol with biochar in the reduction of metal pore water concentrations in a mine soil. J Geochem Explor. 192:103–111. doi:10.1016/j.gexplo.2018.06.007.
  • Ghosh D, Maiti SK. 2021. Biochar assisted phytoremediation and biomass disposal in heavy metal contaminated mine soils: a review. Int J Phytoremediation. 23(6):559–576. doi:10.1080/15226514.2020.1840510.
  • Gong H, Zhao L, Rui X, Hu J, Zhu N. 2022. A review of pristine and modified biochar immobilizing typical heavy metals in soil: applications and challenges. J Hazard Mater. 432:128668. doi:10.1016/j.jhazmat.2022.128668.
  • Guemiza K, Coudert L, Metahni S, Mercier G, Besner S, Blais J-F. 2017. Treatment technologies used for the removal of As, Cr, Cu, PCP and/or PCDD/F from contaminated soil: a review. J Hazard Mater. 333:194–214. doi:10.1016/j.jhazmat.2017.03.021.
  • Haider FU, Coulter JA, Cheema SA, Farooq M, Wu J, Zhang R, Shuaijie G, Liqun C. 2021. Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicol Environ Saf. 214:112112. doi:10.1016/j.ecoenv.2021.112112.
  • Hannan F, Islam F, Huan Q, Farooq MA, Ayyaz A, Fang R, Ali B, Xie X, Zhou W. 2021. Interactive effects of biochar and mussel shell activated concoctions on immobilization of nickel and their amelioration on the growth of rapeseed in contaminated soil. Chemosphere. 282:130897. doi:10.1016/j.chemosphere.2021.130897.
  • Hu B, Shao S, Fu T, Fu Z, Zhou Y, Li Y, Qi L, Chen S, Shi Z. 2020. Composite assessment of human health risk from potentially toxic elements through multiple exposure routes: a case study in farmland in an important industrial city in East China. J Geochem Explo. 210:106443. doi:10.1016/j.gexplo.2019.106443.
  • Hussain A, Rizwan M, Ali S, Rehman MZ, Qayyum MF, Nawaz R, Ahmad A, Asrar M, Ahmad SR, Alsahli AA, et al. 2021. Combined use of different nanoparticles effectively decreased cadmium (Cd) concentration in grains of wheat grown in a field contaminated with Cd. Ecotoxicol Environ Saf. 215:112139. doi:10.1016/j.ecoenv.2021.112139.
  • Iqbal J, Shah NS, Sayed M, Niazi NK, Imran M, Khan JA, Khan ZUH, Hussien AGS, Polychronopoulou K, Howari F. 2021. Nano-zerovalent manganese/biochar composite for the adsorptive and oxidative removal of Congo-red dye from aqueous solutions. J Hazard Mater. 403:123854. doi:10.1016/j.jhazmat.2020.123854.
  • Irshad MA, Rehman MZ, Haq MA, Rizwan M, Nawaz R, Shakoor MB, Wijaya L, Alyemeni MN, Ahmad P, Ali S. 2021. Effect of green and chemically synthesized titanium dioxide nanoparticles on cadmium accumulation in wheat grains and potential dietary health risk: a field investigation. J Hazard Mater. 415:125585. doi:10.1016/j.jhazmat.2021.125585.
  • Jien S-H, Kuo Y-L, Liao C-S, Wu Y-T, Igalavithana AD, Tsang DCW, Ok YS. 2021. Effects of field scale in situ biochar incorporation on soil environment in a tropical highly weathered soil. Environ Pollut. 272:116009. doi:10.1016/j.envpol.2020.116009.
  • Jiménez-Oyola S, Chavez E, Garcia-Martinez MJ, Ortega MF, Bolonio D, Guzman-Martinez F, Garcia-Garizabal I, Romero P. 2021. Probabilistic multi-pathway human health risk assessment due to heavy metal(loid)s in a traditional gold mining area in Ecuador. Ecotoxicol Environ Saf. 224:112629. doi:10.1016/j.ecoenv.2021.112629.
  • Kang W, Bao J, Zheng J, Xu F, Wang L. 2018. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China. Int J Phytoremediation. 20(1):1–7. doi:10.1080/15226514.2014.950412.
  • Karunanidhi D, Aravinthasamy P, Subramani T, Kumar D, Venkatesan G. 2021. Chromium contamination in groundwater and Sobol sensitivity model based human health risk evaluation from leather tanning industrial region of South India. Environ Res. 199:111238. doi:10.1016/j.envres.2021.111238.
  • Khan A, Khan S, Lei M, Alam M, Khan MA, Khan A. 2020a. Biochar characteristics, applications and importance in health risk reduction through metal immobilization. Environ Technol Innov. 20:101121. doi:10.1016/j.eti.2020.101121.
  • Khan AZ, Ding X, Khan S, Ayaz T, Fidel R, Khan MA. 2020b. Biochar efficacy for reducing heavy metals uptake by Cilantro (Coriandrum sativum) and spinach (Spinaccia oleracea) to minimize human health risk. Chemosphere. 244:125543. doi:10.1016/j.chemosphere.2019.125543.
  • Khan AZ, Khan S, Ayaz T, Brusseau ML, Khan MA, Nawab J, Muhammad S. 2020c. Popular wood and sugarcane bagasse biochars reduced uptake of chromium and lead by lettuce from mine-contaminated soil. Environ Pollut. 263(Pt A):114446. doi:10.1016/j.envpol.2020.114446.
  • Khan AZ, Khan S, Khan MA, Alam M, Ayaz T. 2020d. Biochar reduced the uptake of toxic heavy metals and their associated health risk via rice (Oryza sativa L.) grown in Cr-Mn mine contaminated soils. Environ Technol Innov. 17:100590. doi:10.1016/j.eti.2019.100590.
  • Khan S, Reid BJ, Li G, Zhu Y-G. 2014. Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China. Environ Int. 68:154–161. doi:10.1016/j.envint.2014.03.017.
  • Korai PK, Sial TA, Pan G, Abdelrahman H, Sikdar A, Kumbhar F, Channa SA, Ali EF, Zhang J, Rinklebe J, et al. 2021. Wheat and maize-derived water-washed and unwashed biochar improved the nutrients phytoavailability and the grain and straw yield of rice and wheat: a field trial for sustainable management of paddy soils. J Environ Manage. 297:113250. doi:10.1016/j.jenvman.2021.113250.
  • Kumar A, Maiti SK. 2015. Assessment of potentially toxic heavy metal contamination in agricultural fields, sediment, and water from an abandoned chromite-asbestos mine waste of Roro hill, Chaibasa, India. Environ Earth Sci. 74(3):2617–2633. doi:10.1007/s12665-015-4282-1.
  • Li L, Jia Z, Ma H, Bao W, Li X, Tan H, Xu F, Xu H, Li Y. 2019. The effect of two different biochars on remediation of Cd-contaminated soil and Cd uptake by Lolium perenne. Environ Geochem Health. 41(5):2067–2080. doi:10.1007/s10653-019-00257-y.
  • Li Z, Jia M, Christie P, Ali S, Wu L. 2018. Use of a hyperaccumulator and biochar to remediate an acid soil highly contaminated with trace metals and/or oxytetracycline. Chemosphere. 204:390–397. doi:10.1016/j.chemosphere.2018.04.061.
  • Liu R, Zhao D. 2007. In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles. Chemosphere. 68(10):1867–1876. doi:10.1016/j.chemosphere.2007.03.010.
  • Liu Y, Zhu J, Ye C, Zhu P, Ba Q, Pang J, Shu L. 2018. Effects of biochar application on the abundance and community composition of denitrifying bacteria in a reclaimed soil from coal mining subsidence area. Sci Total Environ. 625:1218–1224. doi:10.1016/j.scitotenv.2018.01.003.
  • Maharlouei ZD, Fekri M, Saljooqi A, Mahmoodabadi M, Hejazi M. 2021. Effect of modified biochar on the availability of some heavy metals speciation and investigation of contaminated calcareous soil. Environ Earth Sci. 80(3):1–20. doi:10.1007/s12665-021-09418-8.
  • Matin NH, Jalali M, Buss W. 2020. Synergistic immobilization of potentially toxic elements (PTEs) by biochar and nanoparticles in alkaline soil. Chemosphere. 241:124932. doi:10.1016/j.chemosphere.2019.124932.
  • McManus P, Hortin J, Anderson AJ, Jacobson AR, Britt DW, Stewart J, McLean JE. 2018. Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: influences on copper bioavailability and uptake. Environ Toxicol Chem. 37(10):2619–2632. doi:10.1002/etc.4226.
  • Mujtaba Munir MA, Liu G, Yousaf B, Ali MU, Abbas Q, Ullah H. 2020. Synergistic effects of biochar and processed fly ash on bioavailability, transformation and accumulation of heavy metals by maize (Zea mays L.) in coal-mining contaminated soil. Chemosphere. 240:124845. doi:10.1016/j.chemosphere.2019.124845.
  • Munir MAM, Irshad S, Yousaf B, Ali M, Dan C, Abbas Q, Liu G, Yang X. 2021. Interactive assessment of lignite and bamboo-biochar for geochemical speciation, modulation and uptake of Cu and other heavy metals in the copper mine tailing. Sci Total Environ. 779:146536. doi:10.1016/j.scitotenv.2021.146536.
  • Naeem MA, Khalid M, Aon M, Abbas G, Amjad M, Murtaza B, Khan WD, Ahmad N. 2018. Combined application of biochar with compost and fertilizer improves soil properties and grain yield of maize. J Plant Nutr. 41(1):112–122. doi:10.1080/01904167.2017.1381734.
  • Nawab J, Ghani J, Khan S, Xiaoping W. 2018. Minimizing the risk to human health due to the ingestion of arsenic and toxic metals in vegetables by the application of biochar, farmyard manure and peat moss. J Environ Manage. 214:172–183. doi:10.1016/j.jenvman.2018.02.093.
  • Nejad ZD, Jung MC, Kim K-H. 2018. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ Geochem Health. 40(3):927–953. doi:10.1007/s10653-017-9964-z.
  • O'Connor D, Peng T, Zhang JC, Tsang DS, Alessi D, Shen ZS, Bolan N, Hou D. 2018. Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci Total Environ. 619–620:815–826. doi:10.1016/j.scitotenv.2017.11.132.
  • Oliveira FR, Patel AK, Jaisi DP, Adhikari S, Lu H, Khanal SK. 2017. Environmental application of biochar: current status and perspectives. Bioresour Technol. 246:110–122. doi:10.1016/j.biortech.2017.08.122.
  • Pescatore A, Grassi C, Rizzo AM, Orlandini S, Napoli M. 2022. Effects of biochar on berseem clover (Trifolium alexandrinum, L.) growth and heavy metal (Cd, Cr, Cu, Ni, Pb, and Zn) accumulation. Chemosphere. 287(Pt 1):131986. doi:10.1016/j.chemosphere.2021.131986.
  • Qiao Y, Wu J, Xu Y, Fang Z, Zheng L, Cheng W, Tsang EP, Fang Z, Zhao D. 2017. Remediation of cadmium in soil by biochar-supported iron phosphate nanoparticles. Ecol Eng. 106:515–522. doi:10.1016/j.ecoleng.2017.06.023.
  • Radziemska M, Gusiatin ZM, Kumar V, Brtnicky M. 2022. Co-application of nanosized halloysite and biochar as soil amendments in aided phytostabilization of metal(-oid)s-contaminated soil under different temperature conditions. Chemosphere. 288(Pt 1):132452. doi:10.1016/j.chemosphere.2021.132452.
  • Raj D, Kumar A, Maiti SK. 2020. Brassica juncea (L.) Czern. (Indian mustard): a putative plant species to facilitate the phytoremediation of mercury contaminated soils. Int J Phytoremediation. 22(7):733–744. doi:10.1080/15226514.2019.1708861.
  • Raj D, Maiti SK. 2020. Sources, bioaccumulation, health risks and remediation of potentially toxic metal(loid)s (As, Cd, Cr, Pb and Hg): an epitomised review. Environ Monit Assess. 192:1–20. doi:10.1007/s10661-019-8060-5.
  • Roy A, Maitra S, Ghosh S, Chakrabarti S. 2016. Sonochemically synthesized iron-doped zinc oxide nanoparticles: influence of precursor composition on characteristics. Mater Res Bullet. 74:414–420. doi:10.1016/j.materresbull.2015.11.006.
  • Sabir M, Ali A, Zia-Ur-Rehman M, Hakeem KR. 2015. Contrasting effects of farmyard manure (FYM) and compost for remediation of metal contaminated soil. Int J Phytoremediation. 17(7):613–621. doi:10.1080/15226514.2014.898019.
  • Saleem MH, Kamran M, Zhou Y, Parveen A, Rehman M, Ahmar S, Malik Z, Mustafa A, Anjum RMA, Wang B, et al. 2020. Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper. J Environ Manage. 257:109994. doi:10.1016/j.jenvman.2019.109994.
  • Saqib Rashid M, Liu G, Yousaf B, Song Y, Ahmed R, Rehman A, Arif M, Irshad S, Cheema AI. 2022. Efficacy of rice husk biochar and compost amendments on the translocation, bioavailability, and heavy metals speciation in contaminated soil: role of free radical production in maize (Zea mays L.). J Clean Prod. 330:129805. doi:10.1016/j.jclepro.2021.129805.
  • Su H, Fang Z, Tsang PE, Zheng L, Cheng W, Fang J, Zhao D. 2016. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. J Hazard Mater. 318:533–540. doi:10.1016/j.jhazmat.2016.07.039.
  • Watts MP, Coker VS, Parry SA, Pattrick RAD, Thomas RAP, Kalin R, Lloyd JR. 2015. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr (VI) leachate and chromite ore processing residue. Appl Geochem. 54:27–42. doi:10.1016/j.apgeochem.2014.12.001.
  • Wei J, Tu C, Yuan G, Bi D, Xiao L, Theng BKG, Wang H, Ok YS. 2019. Carbon-coated montmorillonite nanocomposite for the removal of chromium (VI) from aqueous solutions. J Hazard Mater. 368:541–549. doi:10.1016/j.jhazmat.2019.01.080.
  • WHO. 2011. Guidelines for drinking-water quality. WHO Chronicle. 38:104–108.
  • Xiao R, Zhang H, Tu Z, Li R, Li S, Xu Z, Zhang Z. 2020. Enhanced removal of phosphate and ammonium by MgO-biochar composites with NH3·H2O hydrolysis pretreatment. Environ Sci Pollut Res Int. 27(7):7493–7503. doi:10.1007/s11356-019-07355-5.
  • Yaashikaa P, Kumar PS, Varjani S, Saravanan A. 2020. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol Rep. 28:e00570. doi:10.1016/j.btre.2020.e00570.
  • Yang X, Pan H, Shaheen SM, Wang H, Rinklebe J. 2021. Immobilization of cadmium and lead using phosphorus-rich animal-derived and iron-modified plant-derived biochars under dynamic redox conditions in a paddy soil. Environ Int. 156:106628. doi:10.1016/j.envint.2021.106628.
  • Zand AD, Tabrizi AM, Heir AV. 2020. Incorporation of biochar and nanomaterials to assist remediation of heavy metals in soil using plant species. Environ Technol Innov. 20:101134. doi:10.1016/j.eti.2020.101134.
  • Zeeshan M, Ahmad W, Hussain F, Ahamd W, Numan M, Shah M, Ahmad I. 2020. Phytostabalization of the heavy metals in the soil with biochar applications, the impact on chlorophyll, carotene, soil fertility and tomato crop yield. J Cleaner Prod. 255:120318. doi:10.1016/j.jclepro.2020.120318.
  • Zeng J, Han G. 2020. Preliminary copper isotope study on particulate matter in Zhujiang River, southwest China: application for source identification. Ecotoxicol Environ Saf. 198:110663. doi:10.1016/j.ecoenv.2020.110663.
  • Zhang H, Jiang L, Wang H, Li Y, Chen J, Li J, Guo H, Yuan X, Xiong T. 2022. Evaluating the remediation potential of MgFe2O4-montmorillonite and its co-application with biochar on heavy metal-contaminated soils. Chemosphere. 299:134217. doi: 10.1016/j.chemosphere.2022.134217.
  • Zhu S, Irshad MK, Ibrahim M, Chen Q, Shang J, Zhang Q. 2022. The distinctive role of nano-hydroxyapatite modified biochar for alleviation of cadmium and arsenic toxicity in aqueous system. J Water Process Eng. 49:103054. doi:10.1016/j.jwpe.2022.103054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.