158
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Industrial wastewater treatment by plant-based bio-filtration

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abideen Z, Ansari R, Khan MA. 2011. Halophytes: potential source of ligno-cellulosic biomass for ethanol production. Biomass Bioenerg. 35(5):1818–1822. doi:10.1016/j.biombioe.2011.01.023.
  • Alhejoj I, Bandel K, Salameh E. 2015. Floral species as environmental quality indicators in Jordan: high salinity and alkalinity environments. JEP. 06(05):494–514. doi:10.4236/jep.2015.65047.
  • Arias CA, Del Bubba M, Brix H. 2001. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Res. 35(5):1159–1168. doi:10.1016/S0043-1354(00)00368-7.
  • Barca C, Troesch S, Meyer D, Drissen P, Andrès Y, Chazarenc F. 2013. Steel slag filters to upgrade phosphorus removal in constructed wetlands: two years of field experiments. Environ Sci Technol. 47(1):549–556. doi:10.1021/es303778t.
  • Bogacki J, Marcinowski P, Majewski M, Zawadzki J, Sivakumar S. 2018. Alternative approach to current EU BAT recommendation for coal-fired power plant flue gas desulfurization wastewater treatment. Processes. 6(11):229. doi:10.3390/pr6110229.
  • Brasil MS, Matos AT, Soares AA, Ferreira PA. 2005. Qualidade do efluente de sistemas alagados construídos, utilizados no tratamento de esgoto doméstico. Rev Bras Eng Agríc Ambient. 9(suppl 1):133–137. doi:10.1590/1807-1929/agriambi.v9nsupp133-137.
  • Buhmann A, Papenbrock J. 2013. Biofiltering of aquaculture effluents by halophytic plants: basic principles, current uses and future perspectives. Environ Exp Bot. 92(1):122–133. doi:10.1016/j.envexpbot.2012.07.005.
  • Choi H, Geronimo FK, Jeon M, Kim LH. 2022. Evaluation of bacterial community in constructed wetlands treating different sources of wastewater. Ecol Eng. 182(1):106703. doi:10.1016/j.ecoleng.2022.106703.
  • de Lacerda LP, Lange LC, Costa França MG, Zonta E. 2015. Salinity reduction and biomass accumulation in hydroponic growth of Purslane (Portulaca oleracea). Int J Phytorem. 17(3):235–241. doi:10.1080/15226514.2014.883494.
  • Dou W, Zhou Z, Ye J, Huang R, Jiang LM, Chen G, Fei X. 2017. Reusing effluent of flue gas desulfurization wastewater treatment process as an economical calcium source for phosphorus removal. Water Sci Technol. 76(6):1429–1435. doi:10.2166/wst.2017.336.
  • Eggert DA, Rodgers JH, Huddleston GM, Hensman CE. 2008. Performance of pilot-scale constructed wetland treatment systems for flue gas desulfurization waters. Environ Geosci. 15(3):115–129. doi:10.1306/eg.07050707007.
  • Ennabili A, Radoux M. 2021. Nitrogen and phosphorus uptake and biomass production in four riparian plants grown in subsurface flow constructed wetlands for urban wastewater treatment. J Environ Manage. 280(1):111806. doi:10.1016/j.jenvman.2020.111806.
  • Eshel A, Zilberstein A, Alekparov C, Eilam T, Oren I, Sasson Y, … Waisel Y. 2010. Biomass production by desert halophytes: alleviating the pressure on food production. In Proceedings of the 5th IASME/WSEAS international conference on Energy & environment. Wisconsin, USA. February 23-25, p. 362–367.
  • Friederici P. 1995. The alien saltcedar. American Forests. 101:45–47.
  • Fountoulakis MS, Sabathianakis G, Kritsotakis I, Kabourakis EM, Manios T. 2017. Halophytes as vertical-flow constructed wetland vegetation for domestic wastewater treatment. Sci Total Environ. 583(1):432–439. doi:10.1016/j.scitotenv.2017.01.090.
  • Galkaduwa MB, Hettiarachchi GM, Kluitenberg GJ, Hutchinson SL, Davis L, Erickson LE. 2017. Transport and transformation of selenium and other constituents of flue‐gas desulfurization wastewater in water‐saturated soil materials. J Environ Qual. 46(2):384–392. doi:10.2134/jeq2016.09.0335.
  • Gingerich DB, Grol E, Mauter MS. 2018. Fundamental challenges and engineering opportunities in flue gas desulfurization wastewater treatment at coal fired power plants. Environ Sci: Water Res Technol. 4(7):909–925. doi:10.1039/C8EW00264A.
  • Global energy monitor. 2022. Jeffrey Energy Center. Accessed from: https://www.gem.wiki/Jeffrey_Energy_Center.
  • Gross A, Shmueli O, Ronen Z, Raveh E. 2007. Recycled vertical flow constructed wetland (RVFCW)-a novel method of recycling greywater for irrigation in small communities and households. Chemosphere. 66(5):916–923. doi:10.1016/j.chemosphere.2006.06.006.
  • Hadad MHR, Sanchez GC, Mufarrege MdlM, Di Luca GA, Schierano MC, Nocetti E, Caffaratti SE, Pedro MdC 2022. 22 - Constructed wetlands plant treatment system: an eco-sustainable phytotechnology for treatment and recycling of hazardous wastewater. In Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water. Argentina: Elsevier Inc., p. 481–496. doi:10.1016/B978-0-323-85763-5.00013-1.
  • Hilal N, Kim GJ, Somerfield C. 2011. Boron removal from saline water: a comprehensive review. Desalination. 273(1):23–35. doi:10.1016/j.desal.2010.05.012.
  • Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. Circ, Calif Agric Exp Stn. 347(2):1–32.
  • Huang YH, Peddi PK, Tang C, Zeng H, Teng X. 2013. Hybrid zero-valent iron process for removing heavy metals and nitrate from flue-gas-desulfurization wastewater. Sep Purif Technol. 118(1):690–698. doi:10.1016/j.seppur.2013.07.009.
  • Irawan C, Kuo Y, Liu J. 2011. Treatment of boron-containing optoelectronic wastewater by precipitation process. Desalination. 280(1–3):146–151. doi:10.1016/j.desal.2011.06.064.
  • Jesus JM, Calheiros CSC, Castro PML, Borges MT. 2014. Feasibility of Typha Latifolia for high salinity effluent treatment in constructed wetlands for integration in resource management systems. Int J Phytorem. 16(4):334–346. doi:10.1080/15226514.2013.773284.
  • Jesus JM, Cassoni AC, Danko AS, Fiúza A, Borges MT. 2017. Role of three different plants on simultaneous salt and nutrient reduction from saline synthetic wastewater in lab-scale constructed wetlands. Sci Total Environ. 579(1):447–455. doi:10.1016/j.scitotenv.2016.11.074.
  • Kadlec HR, Knight LR. 1996. Treatment Wetlands, Second Edition. Boca Raton, (FL): CRC Press.
  • Kannan AD, Parameswaran P. 2021. Ammonia adsorption and recovery from swine wastewater permeate using naturally occurring clinoptilolite. J Water Process Eng. 43(1):102234. doi:10.1016/j.jwpe.2021.102234.
  • Kroger R, Holland MM, Moore MT, Cooper CM. 2007. Plant senescence: a mechanism for nutrient release in temperate agricultural wetlands. Environ Pollut. 146(1):114–119. doi:10.1016/j.envpol.2006.06.005.
  • Kuyucak N, Zimmer M. 2004. Natural Systems Successfully Treating Landfill Leachate. The ISWA Roma 2004 Conference, 17–21 October, Rome, Italy.
  • Lan W, Zhang J, Hu Z, Ji M, Zhang X, Zhang J, Li F, Yao G. 2018. Phosphorus removal enhancement of magnesium modified constructed wetland microcosm and its mechanism study. J Chem Eng. 335(1):209–214. doi:10.1016/j.cej.2017.10.150.
  • Lefers JB, Van Den Broeke WF, Venderbosch HW, Niet J d, Kettelarij A. 1987. Heavy metal removal from waste water from wet lime(stone)-gypsum flue gas desulfurization plants. Water Res. 21(11):1345–1354. doi:10.1016/0043-1354(87)90008-X.
  • Liang Y, Zhu H, Bañuelos G, Yan B, Shutes B, Cheng X, Chen X. 2017. Removal of nutrients in saline wastewater using constructed wetlands: plant species, influent loads and salinity levels as influencing factors. Chemosphere. 187(1):52–61. doi:10.1016/j.chemosphere.2017.08.087.
  • Li J, Wen Y, Zhou Q, Xingjie Z, Li X, Yang S, Lin T. 2008. Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal subsurface-flow constructed wetlands. Bioresour Technol. 99(11):4990–4996. doi:10.1016/j.biortech.2007.09.012.
  • Lin J, Mahasti NNN, Huang Y. 2021. Recent advances in adsorption and coagulation for boron removal from wastewater: a comprehensive review. J Hazard Mater. 407(1):124401. doi:10.1016/j.jhazmat.2020.124401.
  • Liu J, Zhang X, You S, Wu Q, Zhou K. 2015. Function of Leersia hexandra Swartz in constructed wetlands for Cr(VI) decontamination: a comparative study of planted and unplanted mesocosms. Ecol Eng. 81(1):70–75. doi:10.1016/j.ecoleng.2015.04.025.
  • Lizama Allende K, Fletcher TD, Sun G. 2012. The effect of substrate media on the removal of arsenic, boron and iron from an acidic wastewater in planted column reactors. J Chem Eng. 179(1):119–130. doi:10.1016/j.cej.2011.10.069.
  • Marchand L, Mench M, Jacob DL, Otte ML. 2010. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environ Pollut. 158(12):3447–3461. doi:10.1016/j.envpol.2010.08.018.
  • Mesquita MC, Albuquerque A, Amaral L, Nogueira R. 2013. Effect of vegetation on the performance of horizontal subsurface flow constructed wetlands with lightweight expanded clay aggregates. Int J Environ Sci Technol. 10(3):433–442. doi:10.1007/s13762-012-0119-6.
  • Meutia AA. 2001. Treatment of laboratory wastewater in a tropical constructed wetland comparing surface and subsurface flow. Water Sci Technol. 44(11–12):499–506. doi:10.2166/wst.2001.0872.
  • Mitsios J, Dimirkou A, Ioannou A, Paschalidis C, Doula M. 1994. The sorption isotherms of potassium. Commun Soil Sci Plant Anal. 25(9–10):1373–1386. doi:10.1080/00103629409369121.
  • Mitsch WJ, Gosselink JG. 2000. Wetlands, Third Edition. New York (NY):John Wiley & Sons Inc.
  • Mooney FD, Murray-Gulde C. 2008. Constructed treatment wetlands for flue gas desulfurization waters: full-scale design, construction issues, and performance. Environ Geosci. 15(3):131–141. doi:10.1306/eg.09200707011.
  • Oertli JJ, Grgurevic E. 1975. Effect of pH on the absorption of boron by excised barley roots. Agron J. 67(2):278–280. doi:10.2134/agronj1975.00021962006700020028x.
  • Panta S, Flowers T, Lane P, Doyle R, Haros G, Shabala S. 2014. Halophyte agriculture: success stories. Environ Exp Bot. 107(1):71–83. doi:10.1016/j.envexpbot.2014.05.006.
  • Paredez JM, Mladenov N, Galkaduwa MB, Hettiarachchi GM, Kluitenberg GJ, Hutchinson SL. 2017. A soil column study to evaluate treatment of trace elements from saline industrial wastewater. Water Sci Technol. 76(10):2698–2709. doi:10.2166/wst.2017.413.
  • Papadimitriou CA, Papatheodoulou A, Takavakoglou V, Zdragas A, Samaras P, Sakellaropoulos GP, Lazaridou M, Zalidis G. 2010. Investigation of protozoa as indicators of wastewater treatment efficiency in constructed wetlands. Desalination. 250(1):378–382. doi:10.1016/j.desal.2009.09.060.
  • Paranychianakis N, Tsiknia M, Kalogerakis N. 2016. Pathways regulating the removal of nitrogen in planted and unplanted subsurface flow constructed wetlands. Water Res. 102(1):321–329. doi:10.1016/j.watres.2016.06.048.
  • R Core Team. 2021. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  • Sabadash V, Gumnitsky J, Hyvlyud A, 2016. Mechanism of phosphates sorption by zeolites depending on degree of their substitution for potassium ions. ChChT. 10(2):235–240. doi:10.23939/chcht10.02.235.
  • Saeed T, Muntaha S, Rashid M, Sun G, Hasnat A. 2018. Industrial wastewater treatment in constructed wetlands packed with construction materials and agricultural by-products. J Cleaner Prod. 189(C):442–453. doi:10.1016/j.jclepro.2018.04.115.
  • Sarmento AP, Borges AC, Matos AT. 2013. Effect of cultivated species and retention time on the performance of constructed wetlands. Environ Technol. 34(8):961–965. doi:10.1080/09593330.2012.724210.
  • Saxena P, Bassi A. 2013. Removal of nutrients from hydroponic greenhouse effluent by alkali precipitation and algae cultivation method. J Chem Technol Biotechnol. 88(5):858–863. doi:10.1002/jctb.3912.
  • Sasaki K, Qiu X, Moriyama S, Tokoro C, Ideta K, Miyawaki J. 2013. Characteristic sorption of H3BO3/B(OH)4- on magnesium oxide. Mater Trans. 54(9): 1809–1817. doi:10.2320/matertrans.M-M2013814.
  • Sookbirsingh R, Castillo K, Gill TE, Chianelli RR. 2010. Salt separation processes in the Saltcedar Tamarix ramosissima (Ledeb.). Commun Soil Sci Plant Anal. 41(10), 1271–1281. doi:10.1080/00103621003734281.
  • Stumm W, Morgan JJ. 1996. Oxidation and reduction; equilibria and microbial mediation. Aquatic Chemistry: chemical Equilibria and Rates in Natural Waters, Thrid Edition. John Wiley & Sons, New York.
  • Sundberg-Jones SE, Hassan SM. 2007. Macrophyte sorption and bioconcentration of elements in a pilot constructed wetland for flue gas desulfurization wastewater treatment. Water Air Soil Pollut. 183(1–4):187–200. doi:10.1007/s11270-007-9368-2.
  • Surrency D. 1993. Evaluation of aquatic plants for constructed wetlands: constructed Wetlands for Water Quality Improvement. Florida, USA: Lewis Publishers. doi:10.5004/dwt.2017.20816.
  • Tanner CC. 2001. Plants as ecosystem engineers in subsurface-flow treatment wetlands. Water Sci Technol. 44(11–12):9–17. doi:10.2166/wst.2001.0804.
  • Tu KL, Nghiem LD, Chivas AR. 2010. Boron removal by reverse osmosis membranes in seawater desalination applications. Sep Purif Technol. 75(2):87–101. doi:10.1016/j.seppur.2010.07.021.
  • Türker OC, Yakar A. 2017. A hybrid constructed wetland combined with microbial fuel cell for boron (B) removal and bioelectric production. Ecol Eng. 102:411–421. doi:10.1016/j.ecoleng.2017.02.034.
  • Türker OC, Böcük H, Yakar A. 2013. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent. J Hazard Mater. 252-253(1):132–141. doi:10.1016/j.jhazmat.2013.02.032.
  • Türker OC, Türe C, Böcük H, Yakar A. 2014a. Constructed wetlands as green tools for management of boron mine wastewater. Int J Phytorem. 16(6):537–553. doi:10.1080/15226514.2013.798620.
  • Türker OC, Vymazal J, Türe C. 2014b. Constructed wetlands for boron removal: a review. Ecol Eng. 64(1):350–359. doi:10.1016/j.ecoleng.2014.01.007.
  • [USEPA] U.S. Environmental Protection Agency. 2009. Steam Electric Power Generating Point Source Category: final Detailed Study Report, EPA 821-R-09-008. Washington, DC: National Service Center for Environmental Publications (NSCEP).
  • [USEPA] U.S. Environmental Protection Agency. 2010. Phytotechnologies for site cleanup. EPA 542-F-10 − 009. Washington, DC: National Service Center for Environmental Publications (NSCEP).
  • Vohla C, Kõiv M, Bavor HJ, Chazarenc F, Mander Ü. 2011. Filter materials for phosphorus removal from wastewater in treatment wetlands – A review. Ecol Eng. 37(1):70–89. doi:10.1016/j.ecoleng.2009.08.003.
  • Vymazal J, Kröpfelová L. 2009. Removal of organics in constructed wetlands with horizontal sub-surface flow: a review of the field experience. Sci Total Environ. 407(13):3911–3922. doi:10.1016/j.scitotenv.2008.08.032.
  • Vymazal J, Kröpfelová L. 2015. Multistage hybrid constructed wetland for enhanced removal of nitrogen. Ecol Eng. 84(1):202–208. doi:10.1016/j.ecoleng.2015.09.017.
  • Wan C, Ding S, Zhang C, Tan X, Zou W, Liu X, Yang X. 2017. Simultaneous recovery of nitrogen and phosphorus from sludge fermentation liquid by zeolite adsorption: mechanism and application. Sep Purif Technol. 180(1):1–12. doi:10.1016/j.seppur.2017.02.031.
  • Wang H, Xu J, Sheng L. 2020a. Purification mechanism of sewage from constructed wetlands with zeolite substrates: a review. J Cleaner Prod. 258(1):120760. doi:10.1016/j.jclepro.2020.120760.
  • Wang X, Zhu H, Yan B, Shutes B, Bañuelos G, Wen H. 2020b. Bioaugmented constructed wetlands for denitrification of saline wastewater: A boost for both microorganisms and plants. Environ Int. 138(1):105628. doi:10.1016/j.envint.2020.105628.
  • Wang H, Zhang M, Lv Q, Xue J, Yang J, Han X. 2022. Effective co-treatment of synthetic acid mine drainage and domestic sewage using multi-unit passive treatment system supplemented with silage fermentation broth as carbon source. J Environ Manage. 310(1):114803. doi:10.1016/j.jenvman.2022.114803.
  • Wu H, Zhang J, Ngo HH, Guo W, Hu Z, Liang S, Fan J, Liu H. 2015. A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol. 175(1):594–601. doi:10.1016/j.biortech.2014.10.068.
  • Ye ZH, Lin ZQ, Whiting SN, De Souza MP, Terry N. 2003. Possible use of constructed wetland to remove selenocyanate, arsenic, and boron from electric utility wastewater. Chemosphere. 52(9):1571–1579. doi:10.1016/S0045-6535(03)00497-1.
  • Zhang DQ, Jinadasa KBSN, Gersberg RM, Liu Y, Ng WJ, Tan SK. 2014. Application of constructed wetlands for wastewater treatment in developing countries – A review of recent developments (2000–2013). J Environ Manage. 141(1):116–131. doi:10.1016/j.jenvman.2014.03.015.
  • Zhang L, Scholz M, Mustafa A, Harrington R. 2008. Assessment of the nutrient removal performance in integrated constructed wetlands with the self-organizing map. Water Res. 42(13):3519–3527. doi:10.1016/j.watres.2008.04.027.
  • Zhang L, Lin X, Wang J, Jiang F, Wei L, Chen G, Hao X. 2016. Effects of lead and mercury on sulfate-reducing bacterial activity in a biological process for flue gas desulfurization wastewater treatment. Sci Rep. 6(1):30455. doi:10.1038/srep30455.
  • Zhou X, Wang G. 2010. Nutrient concentration variations during Oenanthe javanica growth and decay in the ecological floating bed system. J Environ Sci. 22(11): 1710–1717. doi:10.1016/S1001-0742(09)60310-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.