59
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Application of phytoaccumulation perspective of Monochoria hastate L. on fluoride contaminated water in hydroponic treatment: its statistical design and characterization studies

, , &

References

  • Ahmad MA, Bibi H, Munir I, Ahmad MN, Zia A, Mustafa G, Ullah I, Khan I. 2018. Fluoride toxicity and its effect on two varieties of Solanum lycopersicum. Fluoride. 51:267–277.
  • Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang M-Q. 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics. 9(3):42. doi:10.3390/toxics9030042.
  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere. 91(7):869–881. doi:10.1016/j.chemosphere.2013.01.075.
  • Ali S, Thakur SK, Sarkar A, Shekhar S. 2016. Worldwide contamination of water by fluoride. Environ Chem Lett. 14(3):291–315. doi:10.1007/s10311-016-0563-5.
  • APHA. 1998. Standard methods for the examination of water and wastewater. 20th ed. Washington (DC): American Public Health Association, American Water Works Association and Water Environmental Federation.
  • Baunthiyal M, Ranghar S. 2015. Accumulation of fluoride by plants: potential for phytoremediation. Clean Soil Air Water. 43(1):127–132. doi:10.1002/clen.201300353.
  • Braga AF, Borges AC, Vaz LRL, Souza TD, Rosa AP. 2021. Phytoremediation of fluoride-contaminated water by Landoltia punctata. Eng Agríc. 41(2):171–180. doi:10.1590/1809-4430-eng.agric.v41n2p171-180/2021.
  • Camarena-Rangel N, Rojas-Velázquez AN, Santos-Díaz, MDS 2015. Fluoride bioaccumulation by hydroponic cultures of camellia (Camellia japonica spp.) and sugar cane (Saccharum officinarum spp.). Chemosphere. 136:56–62. doi:10.1016/j.chemosphere.2015.03.071.
  • Chen L, Xiong Z. 2011. Phytoremediation in fluoride contaminated water and toxicity of fluoride on plants. Environ Sci Technol. 34:60–151.
  • Clesceri LS, Greenberg AE, Trussell RR. 1989. Standard methods for the examination of water and wastewater. 17th ed. Washington (DC): American Public Health Association.
  • Deb VK, Rabbani A, Upadhyay S, Bharti P, Sharma H, Rawat DV, Saxena G. 2020. Microbe- assisted phytoremediation in reinstating heavy metal-contaminated sites: concepts, mechanisms, and future perspectives. In: Arora P, editor. Microbial technology for health and environment. Vol. 22. p.161–189. doi:10.1007/978-981-15-2679-4-6.
  • Delgado-González CR, Madariaga-Navarrete A, Fernández-Cortés JM, Islas-Pelcastre M, Oza G, Iqbal HMN, Sharma A. 2021. Advances and applications of water phytoremediation: a potential biotechnological approach for the treatment of heavy metals from contaminated water. Int J Environ Res Public Health. 18(10):5215. doi:10.3390/ijerph18105215.
  • Díaz MSS, Pedraza CZ. 2010. Fluoride removal from water by plant species that are tolerant and highly tolerant to hydrogen fluoride. Fluoride. 43(2):150–156.
  • Giri AK, Patel RK. 2011. Toxicity and bioaccumulation potential of Cr(VI) and Hg(II) on differential concentration by Eichhornia crassipes in hydroponic culture. Water Sci Technol. 63(5):899–907. doi:10.2166/wst.2011.268.
  • Hoagland DR, Arnon DI. 1950. The water culture method for growing plants without soil, revised. California Agricultural Experiment Station Circ. No. 347. 31. Internet Archive: Water.
  • Jadia CD, Fulekar MH. 2009. Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol. 8(6):921–928.
  • Kadir AA, Abdullah SRS, Othman BA, Abu Hasan H, Othman AR, Imron MF, Izzati Ismail N, Kurniawan SB. 2020. Dual function of Lemna minor and Azolla pinnata as phytoremediator for palm oil mill effluent and as feedstock. Chemosphere. 259:127468. doi:10.1016/j.chemosphere.2020.127468.
  • Kafle A, Timilsina A, Gautam A, Adhikari K, Bhattarai A, Arya N. 2022. Phytoremediation: mechanisms, plant selection and enhancement by natural and synthetic agents. Environ Adv. 8:100203. doi:10.1016/j.envadv.2022.100203.
  • Karmakar S, Mukherjee J, Mukherjee S. 2016. Removal of fluoride contamination in water by three aquatic plants. Int J Phytoremediation. 18(3):222–227. doi:10.1080/15226514.2015.1073676.
  • Khandare RV, Watharkar AD, Pawar PK, Jagtap AA, Desai NS. 2021. Hydrophytic plants Canna indica, Epipremnum aureum, Cyperus alternifolius, and Cyperus rotundus for phytoremediation of fluoride from water. Environ Technol Innov. 21(159):101234. doi:10.1016/j.eti.2020.101234.
  • Koźmińska A, Wiszniewska A, Hanus-Fajerska E, Muszyńska E. 2018. Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnol Rep. 12(1):1–14. doi:10.1007/s11816-017-0467-2.
  • Peng CY, Xu XF, Ren YF, Niu HL, Yang YQ, Hou RY, Wan XC, Cai HM. 2021. Fluoride absorption, transportation, and tolerance mechanism in Camellia sinensis, and its bioavailability and health risk assessment: a systematic review. J Sci Food Agric. 101(2):379–387. doi:10.1002/jsfa.10640.
  • Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K. 2011. Phytoremediation of heavy metal-contaminated water sediment by Eleocharis acicularis. Clean Soil Air Water. 39(8):735–741. doi:10.1002/clen.201000488.
  • Singh G, Kumari B, Sinam G, Kumar N, Mallick, S, Kriti  . 2018. Fluoride distribution and contamination in the water, soil, and plants continuum and its remedial technologies, an Indian perspective–a review. Environ Pollut. 239:95–108. doi:10.1016/j.envpol.2018.04.002.
  • Sinha S, Pandey K, Mohan D, Singh KP. 2003. Removal of fluoride from aqueous solutions by Eichhornia crassipes biomass and its carbonized form. Ind Eng Chem Res. 42(26):6911–6918. doi:10.1021/ie030544k.
  • Torok A, Gulyas Z, Szalai G, Kocsy G, Majdik C. 2015. Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization. J Hazard Mater. 299:371–378. doi:10.1016/j.jhazmat.2015.06.042.
  • Weerasooriyagedara M, Ashiq A, Rajapaksha AU, Wanigathunge RP, Agarwal T, Magana-Arachchi D, Vithanage M. 2020. Phytoremediation of fluoride from the environmental matrices: a review on its application strategies. Groundw Sustain Dev. 10:100349. doi:10.1016/j.gsd.2020.100349.
  • WHO. 2011. Guidelines or drinking-water quality. 4th ed. Geneva: World Health Organization.
  • Winer BJ. 1981. Statistical principles in Experimental Design. International Student Edition, London.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.