149
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Adaptive physio-anatomical modulations and ionomics of Volkameria inermis L. in response to NaCl

, & ORCID Icon

References

  • Aguirre-Medina JF, Gallegos JAA, Posadas LDR, Shibata JK, Lopez TC. 2002. Morphological differences on the leaf epidermis of common bean and their relationship to drought tolerance. Agricultura Technical enMexico. 28:53–64.
  • Ahammed GJ, Li X, Liu A, Chen S. 2020. Brassinosteroids in plant tolerance to abiotic stress. J Plant Growth Regul. 39(4):1451–1464. doi:10.1007/s00344-020-10098-0.
  • Asrar H, Hussain T, Hadi SMS, Gul B, Nielsen BL, Khan MA. 2017. Salinity-induced changes in light harvesting and carbon assimilating complexes of Desmostachyabipinnata (L.) Staph. EnvironExp Bot. 135:86–95. doi:10.1016/j.envexpbot.2016.12.008.
  • Astaneh RK, Bolandnazar S, Nahandi FZ, Oustan S. 2019. Effects of selenium on enzymatic changes and productivity of garlic under salinity stress. SAfr J Bot. 121:447–455. doi:10.1016/j.sajb.2018.10.037.
  • Balusamy SR, Rahimi S, Sukweenadhi J, Sunderraj S, Shanmugam R, Thangavelu L, Mijakovic I, Perumalsamy H. 2022. Chitosan, chitosan nanoparticles, and modified chitosan biomaterials, a potential tools to combat salinity stress in plants. CarbohydrPolym. 284:119189. doi:10.1016/j.carbpol.2022.119189.
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207. doi:10.1007/BF00018060.
  • Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I. 2014. The twins K + and Na + in plants. J Plant Physiol. 171(9):723–731. doi:10.1016/j.jplph.2013.10.014.
  • Bueno M, Cordovilla MDP. 2021. Plant growth regulators application enhances tolerance to salinity and benefits the halophyte Plantagocoronopus in saline agriculture. Plants. 10(9):1872. doi:10.3390/plants10091872.
  • Choudhary S, Wani KI, Naeem M, Khan MMA, Aftab T. 2023. Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: polyamines and nitric oxide crosstalk. J Plant Growth Regul. 42(2):539–553. doi:10.1007/s00344-022-10584-7.
  • Debnath M, Ashwath N, Hill CB, Callahan DL, Dias DA, Jayasinghe NS, Midmore DJ, Roessner U. 2018. Comparative metabolic and ionomic profiling of two cultivars of Stevia rebaudiana Bert. (Bertoni) grown under salinity stress. Plant Physiol Biochem. 129:56–70. doi:10.1016/j.plaphy.2018.05.001.
  • Diao M, Ma L, Wang J, Cui J, Fu A, Liu HY. 2014. Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing the chloroplast antioxidant defense system. J Plant Growth Regul. 33(3):671–682. doi:10.1007/s00344-014-9416-2.
  • Doğru A, Bayram NE. 2016. A study on drought stress tolerance in some maize (Zea mays L.) cultivars. Sakarya Univ J Sci. 20:509–519. doi:10.16984/saufenbilder.25673.
  • Dolatabadian A, Sanavy SAMM, Ghanati F. 2011. Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Not Sci Biol. 3(1):41–45. doi:10.15835/nsb315627.
  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for the determination of sugars and related substances. Anal Chem. 28(3):350–356. doi:10.1021/ac60111a017.
  • FAO. 2021. Global map of salt affected soils version 1.0 [accessed 2021 Dec]. https://www.fao.org/soils-po rtal/data-hub/soil-maps-and-databases/global-map-of-salt-affected-soils/en/.
  • Fakhrfeshani M, Shahriari-Ahmadi F, Niazi A, Moshtaghi N, Zare-Mehrjerdi M. 2015. The effect of salinity stress on Na+, K + concentration, Na+/K + ratio, electrolyte leakage, and HKT expression profile in roots of Aeluropuslittoralis. J Plant Mol Breed. 3:1–10. doi:10.22058/JPMB.2015.15369.
  • Feng RW, Wei CY, Tu SX. 2013. The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot. 87:58–68. doi:10.1016/j.envexpbot.2012.09.002.
  • Gucci R, Aronne G, Lombardini L, Tattini M. 1997. Salinity tolerance in Phillyreaspecies. New Phytol. 135(2):227–234. doi:10.1046/j.1469-8137.1997.00644.x.
  • Guo J, Shan C, Zhang Y, Wang X, Tian H, Han G, Zhang Y, Wang B. 2022. Mechanisms of salt tolerance and molecular breeding of salt-tolerant ornamental plants. Front Plant Sci. 13:854116. doi:10.3389/fpls.2022.854116.
  • Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, Prasad MNV, Ozturk M, Fujita M. 2014. Potential use of halophytes to remediate saline soils. Biomed Res Int. 2014:589341. doi:10.1155/2014/589341.
  • Hura T, Grzesiak S, Hura K, Thiemt E, Tokarz K, Wędzony M. 2007. Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance. Ann Bot. 100(4): 767–775.
  • Iqbal N, Umar S, Khan NA, Khan MIR. 2014. A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot. 100:34–42. doi:10.1016/j.envexpbot.2013.12.006.
  • Jiaxin G, Xiaoyu L, Yifan T, Huijuan G, Wei M. 2022. Comparative ionomics and metabolic responses and adaptive strategies of cotton to salt and alkali stress. Front Plant Sci. 13:1–15. DOI 10.3389/fpls.2022.871387
  • Junghans U, Polle A, Düchting P, Weiler E, Kuhlman B, Gruber F, Teichmann T. 2006. Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ. 29(8):1519–1531. doi:10.1111/j.1365-3040.2006.01529.x.
  • Khong TD, Young MD, Loch A, Thennakoon J. 2018. Mekong river delta farm-household willingness to pay for salinity intrusion risk reduction. Agric Water Manag. 200:80–89. doi:10.1016/j.agwat.2017.12.010.
  • Krasensky J, Jonak C. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. 63(4):1593–1608. doi:10.1093/jxb/err460.
  • Kromdijk J, Long SP. 2016. One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation. Proc Biol Sci. 283(1826):20152578. doi:10.1098/rspb.2015.2578.
  • Kumar S, Li G, Yang J, Huang X, Ji Q, Liu Z, Ke W, Hou H. 2021. Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Front Plant Sci. 12:660409. doi:10.3389/fpls.2021.660409.
  • Liang X, Zhang L, Natarajan SK, Becker DF. 2013. Proline mechanisms of stress survival. Antioxid Redox Signal. 19(9):998–1011. doi:10.1089/ars.2012.5074.
  • Ma J, Zhang M, Xiao X, You J, Wang J, Wang T, Yao Y, Tian C. 2013. Global transcriptome profiling of Salicornia europaea L. shoots under NaCl treatment. PLOS One. 8(6):e65877. doi:10.1371/journal.pone.0065877.
  • Manishankar P, Wang N, Köster P, Abdulrahman A, Alatar Kudla J. 2018. Calcium signaling during salt stress and in the regulation of ion homeostasis. J Exp Bot. 69(17):4215–4226. doi:10.1093/jxb/ery201.
  • Mansour MMF, Salama KHA. 2019. Cellular mechanisms of plant salt tolerance. In: Giri B, Varma A, editors. Microorganisms in saline environments: strategies and functions. Vol 56. Cham: Springer. doi:10.1007/978-3-030-18975-4_8.
  • Moore S, Stein WH. 1948. Photometric ninhydrin method for use in the chromatography of amino acids. J Biol Chem. 176(1):367–388.
  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911
  • Nardi EP, Evangelista FS, Tormen L, Saint TD, Curtius AJ, de Souza SS, Barbosa JF. 2009. Inductively coupled plasma mass spectrometry (ICP-MS) is used to determine toxic and essential elements in different types of food samples. Food Chem. 112(3):727–732. doi:10.1016/j.foodchem.2008.06.010.
  • Natarajan S, Chellappan KP. 2004. Photosynthetic studies Excoecariaagallocha L. under salinity. J Theor Biol. 1:73–79.
  • Palliyath S, Puthur JT. 2018. The modulation of various physiochemical changes in Bruguieracylindrica (L.) Blume affected by high concentrations of NaCl. Acta Physiol Plant. 40(9):1–18. doi:10.1007/s11738-018-2735-3.
  • Parida AK, Das AB, Sanada Y, Mohanty P. 2004. Effects of salinity on biochemical components of the mangrove, Aegicerascorniculatum. Aquat Bot. 80(2):77–87. doi:10.1016/j.aquabot.2004.07.005.
  • Pompeiano A, Landi M, Meloni G, Vita F, Guglielminetti L, Guidi L. 2017. Allocation pattern, ion partitioning, and chlorophyll a fluorescence in Arundo donax L. in responses to salinity stress. Plant Biosyst. 151(4):613–622. doi:10.1080/11263504.2016.1187680.
  • Reddy INBL, Kim BK, Yoon IS, Kim KH, Kwon TR. 2017. Salt tolerance in rice: focus on mechanisms and approaches. Rice Sci. 24(3):123–144. doi:10.1016/j.rsci.2016.09.004.
  • Saadeddi NRA, Doddema H. 1986. Anatomy of the ‘extreme’halophyteArthrocnemumfruticosum (L.) Moq. in relation to its physiology. Ann Bot. 57(4):531–544. doi:10.1093/oxfordjournals.aob.a087134.
  • Sagervanshi A, Naeem A, Kaiser H, Pitann B, Mühling KH. 2021. Early growth reduction in Viciafaba L. under alkali salt stress is mainly caused by excess bicarbonate and related to citrate and malate over-accumulation. Environ Exp Bot. 192:104636–104650. doi:10.1016/j.envexpbot.2021.104636.
  • Seifikalhor M, Aliniaeifard S, Shomali A, Azad N, Hassani B, Lastochkina O, Li T. 2019. Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signal Behav. 14(11):e1665455. doi:10.1080/15592324.2019.1665455.
  • Sheikhalipour M, Esmaielpour B, Behnamian M, Gohari G, Giglou MT, Vachova P, Rastogi A, Brestic M, Skalicky M. 2021. Chitosan–selenium nanoparticle (Cs–Se NP) foliar spray alleviates salt stress in bitter melon. Nanomaterials. 11(3):684. doi:10.3390/nano11030684.
  • Shelden MC, Gilbert SE, Tyerman SD. 2020. A laser ablation technique maps differences in elemental composition in the roots of two barley cultivars subjected to salinity stress. Plant J. 101(6):1462–1473. doi:10.1111/tpj.14599.
  • Vaishnav A, Varma A, Tuteja N, Choudhary DK. 2016. PGPR-mediated amelioration of crops under salt stress. In: Choudhary D, Varma A, Tuteja N, editors. Plant-microbe interaction: an approach to sustainable agriculture. Singapore: Springer. doi:10.1007/978-981-10-2854-0_10.
  • Wang QY, Liu JS, Hu B. 2016. Integration of copper subcellular distribution and chemical forms to understand copper toxicity in apple trees. EnvironExpBot. 123:125–131. doi:10.1016/j.envexpbot.2015.11.014.
  • Wilkins DA. 1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytol. 80(3):623–633. tb01595.x doi:10.1111/j.1469-8137.1978.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.