161
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Phytomanagement of trace element polluted fields with aromatic plants: supporting circular bio-economies

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Adamo P, Agrelli D, Zampella MV. 2018. Chemical Speciation to assess bioavailability, bioaccessibility and geochemical forms of potentially toxic metals (PTMs) in polluted soils. In: De Vivo B, Belkin HE, Lima A, editors. Book: environmental Geochemistry: site Characterization, Data Analysis and Case Histories. Elsevier. p. 153–194. doi: 10.1016/B978-0-444-63763-5.00010-0.
  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals concepts and applications. Chemosphere. 91(7):869–881. doi: 10.1016/j.chemosphere.2013.01.075.
  • Alvarez A, Saez JM, Davila Costa JS, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Polti MA, Amoroso MJ. 2017. Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere. 166:41–62. doi: 10.1016/j.chemosphere.2016.09.070.
  • Angelova VR, Grekov DF, Kisyov VK, Ivanov KI. 2015. Potential of Lavender (Lavandula vera L.) for phytoremediation of soils contaminated with heavy metals. Int J Agri Biosyst Eng. 9(5). doi: 10.5281/zenodo.1105651.
  • Anwar S, Nawaz MF, Gul S, Rizwan M, Ali S, Kareem A. 2016. Uptake and distribution of minerals and heavy metals in commonly grown leafy vegetable species irrigated with sewage water. Environ Monit Assess. 188(9):541. doi: 10.1007/s10661-016-5560-4.
  • Bani A, Echevarria G, Zhang X, Benizri E, Laubie B, Morel JL, Simonnot MO. 2015. The effect of plant density in nickelphytomining field experiments with Alyssum murale in Albania. Aust J Bot. 63(2):72–77. doi: 10.1071/BT14285.
  • Berghman G, Goossens D. 2021. Can the contamination of urban street sediment be used as an indicator for traffic density? A case-study in the city of Leuven, Belgium. J Environ Manage. 295:113134. doi: 10.1016/j.jenvman.2021.113134.
  • Bian R, Joseph S, Cui L, Pan G, Li L, Liu X, Zhang A, Rutlidge H, Wong S, Chia C, et al. 2014. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J Hazard Mater. 272:121–128. doi: 10.1016/j.jhazmat.2014.03.017.
  • Canadian Ministry of the Environment (CME). 2009. Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act.
  • Chaney RL, Baklanov IA. 2017. Chapter five - Phytoremediation and phytomining: status and promise. Ad Bot Res. 83:189–221. doi: 10.1016/bs.abr.2016.12.006.
  • Chaoua S, Boussaa S, El Gharmali A, Boumezzough A. 2018. Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J Saudi Soc Agric Sci. 18(4):429–436. doi: 10.1016/j.jssas.2018.
  • Chojnacka K, Moustakas K, Witek-Krowiak A. 2020. Bio-based fertilizers: a practical approach towards circular economy. Bioresour Technol. 295:122223. doi: 10.1016/j.biortech.2019.122223.
  • Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, van Sanden S, van Belleghem F, et al. 2011. The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol. 168(4):309–316. doi: 10.1016/j.jplph.2010.07.010.
  • De Vries W, Römkens PFAM, Kros J, Voogd J, Schulte-Uebbing L. 2022. Impacts of nutrients and heavy metals in European Agriculture. Current and critical inputs in relation to air, soil and water quality. European Topic Centre on Data integration and digitalisation, Copenhagen, Denmark: EEA. ISBN 9783200083271.
  • Defarge N, Spiroux de Vendômois J, Séralini GE. 2018. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol Rep. 5:156–163. doi: 10.1016/j.toxrep.2017.12.025.
  • Environment Protection Authority of Australia. 2012. Classification and management of contaminated soil for disposal. Information Bulletin 105. Hobart, TAS 7001 Australia.
  • Environmental Protection Ministry of China (EPMC). 2014. National survey report of soil contamination status of China. Environmental Protection Ministry of China, Beijing, China.
  • Environmental Protection Ministry of China (EPMC). 2015. Standards of soil environmental quality of agricultural land. Huangbanhang 69: office of Environmental Protection Ministry of China, Beijing, China.
  • EPA (96-007). 1996. The Metals Translator: guidance for Converting a Total Recoverable Permit Limit from a Dissolved Criterion, vol. 823.
  • Estevez E, Cabrera MC, Fernandez-Vera JR, Molina-Diaz A, Robles-Molina J, Palacios-Diaz MP. 2016. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes. Sci Total Environ. 551–552:186–196. doi: 10.1016/j.scitotenv.2016.01.177.
  • Etim EU, Onianwa PC. 2013. Heavy metal pollution of topsoil in the vicinity of an industrial estate co-located with a housing estate in Southwestern Nigeria. JEP. 04(01):91–98. doi: 10.4236/jep.2013.41010.
  • European Commission. 2015. Closing the loop -An EU action plan for the circular economy, 614. http://eur-lex.europa.eu/resource.html?uri=cellar:8a8ef5e8-99a0-11e5-b3b7-01aa75ed71a1.0012.02/DOC_1&format=PDF.
  • European Environmental Agency (EEA). 2007. Progress in management of contaminated sites (CSI 015/LSI 003http://www.eea.europa.eu/data-and-maps/indicators.
  • Fayiga AO, Saha U, Cao X, Ma LQ. 2011. Chemical and physical characterization of lead in three shooting range soils in Florida. Chem Speciat Bioavailab. 23(3):163–169. doi: 10.3184/095422911X13103191328195.
  • Francocci F, Trincardi F, Barbanti A, Zacchini M, Sprovieri M. 2020. Linking Bioeconomy to redevelopment in contaminated sites: potentials and enabling factors. Front Environ Sci. 8:144. doi: 10.3389/fenvs.2020.00144.
  • Gao T, Wang H, Li C, Zuo M, Wang X, Liu Y, Yang Y, Xu D, Liu Y, Fang X. 2022. Effects of heavy metal stress on physiology, hydraulics, and anatomy of three desert plants in the Jinchang Mining Area, China. IJERPH. 19(23):15873. doi: 10.3390/ijerph192315873.
  • Ghafouri L, Daryabeigi-Zand A, Mohammadi M. 2022. Phytoextraction potential of halophyte plants under industrial multi-metal contaminated sites. Acta Ecologica Sinica. 42(2):49–56. doi: 10.1016/j.chnaes.2021.03.005.
  • Giannakoula A, Therios I, Chatzissavvidis C. 2021. Effect of lead and copper on photosynthetic apparatus in Citrus (Citrus aurantium L.) plants. The role of antioxidants in oxidative damage as a response to heavy metal stress. Plants. 10(1):155. doi: 10.3390/plants10010155.
  • Gupta AK, Tomar JMS, Kaushal R, Kadam DM, Rathore AC, Mehta H, Ojasvi PR. 2021. Aromatic plants based environmental sustainability with special reference to degraded land management. J App Res MedAromat Plants. 22:100298. doi: 10.1016/j.jarmap.2021.100298.
  • Hadia F, Ahmed A. 2018. Heavy metal pollution. J Bacteriol Mycol. 6(3):179–181. doi: 10.15406/jbmoa.2018.06.00199.
  • Hammond CM, Root RA, Maier RM, Chorover J. 2020. Arsenic and iron speciation and mobilization during phytostabilization of pyritic mine tailings. Geochim Cosmochim Acta. 286:306–323. doi: 10.1016/j.gca.2020.07.001.
  • He Z, Shentu J, Yang X, Baligar VC, Zhang T, Stoffella PJ. 2015. Heavy metal contamination of soils: sources, indicators, and assessment. J Environ Indicators. 9:17–18. Corpus ID: 130115125.
  • Kanmani S, Gandhimathi R. 2013. Assessment of heavy metal contamination in soil due to Leachate migration from an open dumping site. Appl Water Sci. 3(1):193–205. doi: 10.1007/s13201-012-0072-z.[Mismatch][
  • Khajanchi L, Yadav RK, Kaur R, Bundela DS, Khan MI, Chaudhary M, Meena RL, Dar SR, Singh G. 2013. Productivity, essential oil yield, and heavy metal accumulation in lemon grass (Cymbopogon flexuosus) under varied wastewater-groundwater irrigation regimes. Ind Crop Prod. 45:270–278. doi: 10.1016/j.indcrop.2013.01.004.
  • Kłos A, Czora M, Rajfur M, Wacławek M. 2012. Mechanisms for translocation of heavy metals from soil to epigeal mosses. Water Air Soil Pollut. 223(4):1829–1836. doi: 10.1007/s11270-011-0987-2.
  • Kulbat-Warycha K, Georgiadou EC, Mańkowska D, Smolińska B, Fotopoulos V, Leszczyńsk J. 2020. Response to stress and allergen production caused by metal ions (Ni, Cu and Zn) in oregano (Origanum vulgare L.) plants. J Biotechnol. 324:171–182. doi: 10.1016/j.jbiotec.2020.10.025.
  • Laporte-Saumure M, Martel R, Mercier G. 2011. Characterization and metal availability of copper, lead, antimony and zinc contamination at four Canadian small arms firing ranges. Environ Technol. 32(7–8):767–781. doi: 10.1080/09593330.2010.512298.
  • Law N°24585. 1995. Argentina, Mining activity-environmental impact. Boletín Oficial. 28278:1–2. https://www.argentina.gob.ar/normativa/nacional/ley-24585-30096.
  • Li W, Xu B, Song Q, Liu X, Xu J, Brookes PC. 2014. The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China. Sci Total Environ. 472:407–420. doi: 10.1016/j.scitotenv.2013.11.046.
  • Loland J, Singh B. 2004. Copper contamination of soil and vegetation in coffee orchards after long-term use of Cu fungicides. Nutr Cycling Agroecosyst. 69(3):203–211. doi: 10.1023/B:FRES.0000035175.74199.9a.
  • Mahrous NN, Columbus MP, Southam G, Macfie SM. 2019. Changes in microbial community structure and increased metal bioavailability in a metal-contaminated soil and in the rhizosphere of corn (Zea mays). Rhizosphere. 11:100169. doi: 10.1016/j.rhisph.2019.100169.
  • Mandal P. 2017. An insight of environmental contamination of arsenic on animal health. Emerg Contam. 3(1):17–22. doi: 10.1016/j.emcon.2017.01.004.
  • Manriquez-Altamirano A, Sierra-Perez J, Munoz P, Gabarrell X. 2020. Analysis of urban agriculture solid waste in the frame of circular economy: case study of tomato crop in integrated rooftop greenhouse. Sci Total Environ. 734:139375. doi: 10.1016/j.scitotenv.2020.139375.
  • Martinez Finley EJ, Chakraborty S, Fretham SJ, Aschner M. 2012. Cellular transport and homeostasis of essential and nonessential metals. Metallomics. 4(7):593–605. doi: 10.1039/c2mt00185c.
  • Mench M, Schwitzguebel JP, Schroeder P, Bert V, Gawronski S, Gupta S. 2009. Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res Int. 16(7):876–900. doi: 10.1007/s11356-009-0252-z.
  • Mendez MO, Maier RM. 2008. Phytostabilization of mine tailings in arid and semiarid environments - an emerging remediation technology. Environ Health Perspect. 116(3):278–283. doi: 10.1289/ehp.10608.
  • Missimer T, Teaf C, Beeson W, Maliva R, Woolschlager J, Covert D. 2018. Natural background and anthropogenic arsenic enrichment in florida soils, surface water, and groundwater: a review with a discussion on public health risk. IJERPH. 15(10):2278. doi: 10.3390/ijerph15102278.
  • Nazir R, Khan M, Masab M, Ur Rehman H, Ur Rauf N, Shahab S, Ameer N, Sajed M, Mohib Ullah M, Rafeeq M, et al. 2015. Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physicochemical parameters of soil and water collected from Tanda Dam Kohat. J Pharmacol Sci. 7(3):89–97. https://www.semanticscholar.org/paper/Accumulation-of-Heavy-Metals-(Ni%2C-Cu%2C-Cd%2C-Cr%2C-Pb%2C-Nazir-Khan/4940c83417f0d67546173b84ec876925292d0ef9.
  • Nies DH. 1999. Microbial heavy-metal resistance. Appl Microbiol Biotechnol. 51(6):730–750. doi: 10.1007/s002530051457.
  • OVAM. 2020. Towards a circular economy monitor for Flanders: an initial interpretation by OVAM. Flanders State of the Art. 1-135. https://ovam.vlaanderen.be.
  • Pandey J, Kumar Verma R, Singh S. 2019. Suitability of aromatic plants for phytoremediation of heavy metal contaminated areas: a review. Int J Phytoremediation. 21(5):405–418. doi: 10.1080/15226514.2018.1540546.
  • Pandey VC, Pandey DN, Singh N. 2015. Sustainable phytoremediation based on naturally colonizing and economically valuable plants. J Clean Prod. 86:37–39. doi: 10.1016/j.jclepro.2014.08.030.
  • Pandey VC. 2012. Invasive species based efficient green technology for phytoremediation of fly ash deposits. J Geochem Explor. 123:13–18. doi: 10.1016/j.gexplo.2012.05.008.
  • Pandey VC. 2013. Suitability of Ricinus communis L. cultivation for phytoremediation of fly ash disposal sites. Ecol Eng. 57:336–341. doi: 10.1016/j.ecoleng.2013.04.054.
  • Patel A, Patra DD. 2014. Influence of heavy metal rich tannery sludge on soil enzymes vis-à-vis growth of Tagetes minuta, an essential oil bearing crop. Chemosphere. 112:323–332. doi: 10.1016/j.chemosphere.2014.04.063.
  • Perez-Vazquez FJ, Flores-Ramirez R, Ochoa-Martinez AC, Orta-Garcia ST, Hernandez-Castro B, Carrizalez-Yanez L, Perez-Maldonado IN. 2015. Concentrations of persistent organic pollutants (POPs) and heavy metals in soil from San Luis Potosi, Mexico. Environ Monit Assess. 187(1):4119. doi: 10.1007/s10661-014-4119-5.
  • Ramamurthy AS, Memarian R. 2012. Phytoremediation of mixed soil contaminants. Water Air Soil Pollut. 223(2):511–518. doi: 10.1007/s11270-011-0878-6.
  • Raveau R, Fontaine J, Bert V, Perlein A, Tisserant B, Ferrant P, Lounès- Hadj Sahraoui A. 2021. In situ cultivation of aromatic plant species for the phytomanagement of an aged-trace element polluted soil: plant biomass improvement options and techno-economic assessment of the essential oil production. Sci Total Environ. 789:147944. doi: 10.1016/j.scitotenv.2021.147944.
  • Rees F, Sterckeman T, Morel JL. 2020. Biochar-assisted phytoextraction of Cd and Zn by Noccaea caerulescens on a contaminated soil: a four-year lysimeter study. Sci Total Environ. 707:135654. doi: 10.1016/j.scitotenv.2019.135654.
  • Rodrigues J, Houzelot V, Ferrari F, Echevarria G, Laubie B, Morel J-L, Simonnot M-O, Pons M-N. 2016. Life cycle assessment of agromining chain highlights role of erosion control and bioenergy. J Clean Prod. 139:770–778. doi: 10.1016/j.jclepro.2016.08.110.
  • Rotkittikhun P, Kruatrachue M, Pokethitiyook P, Baker AJ. 2010. Tolerance and accumulation of lead in Vetiveria zizanioides and its effect on oil production. J Environ Biol. 31(3):329–334. PMID: 21047007.
  • Salem MA, Bedade DK, Al-Ethawi L, Al-Waleed SM. 2020. Assessment of physiochemical properties and concentration of heavy metals in agricultural soils fertilized with chemical fertilizers. Heliyon. 6(10):e05224. doi: 10.1016/j.heliyon.2020.e05224.
  • Saran, A. 2023. “Country based global distribution of phytomanaged polluted fields using aromatic plants dataset.” Mendeley Data, V1, doi: 10.17632/2nnt4ws67x.1.
  • Saran A, Fernandez L, Cora F, Savio M, Thijs S, Vangronsveld J, Merini LJ. 2020. Phytostabilization of Pb and Cd polluted soils using Helianthus petiolaris as pioneer aromatic plant species. Int J Phytoremediation. 22(5):459–467. doi: 10.1080/15226514.2019.1675140.
  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran WA, Matloob A, Rehim A, Hussain S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere. 171:710–721. doi: 10.1016/j.chemosphere.2016.12.116.
  • Sheoran V, Sheoran A, Poonia P. 2010. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol. 41(2):168–214. doi: 10.1080/10643380902718418.
  • Shi T, Ma J, Zhang Y, Liu C, Hu Y, Gong Y, Wu X, Ju T, Hou H, Zhao L. 2019. Status of lead accumulation in agricultural soils across China (1979–2016). Environ Int. 129:35–41. doi: 10.1016/j.envint.2019.05.025.
  • Smeets K, Opdenakker K, Remans T, van Sanden S, van Belleghem F, Semane B, Horemans N, Guisez Y, Vangronsveld J, Cuypers A. 2009. Oxidative stress-related responses at transcriptional and enzymatic levels after exposure to Cd or Cu in a multipollution context. J Plant Physiol. 166(18):1982–1992. doi: 10.1016/j.jplph.2009.06.014.
  • Suvarapu LN, Baek SO. 2017. Determination of heavy metals in the ambient atmosphere: a review. Toxicol Ind Health. 33(1):79–96. doi: 10.1177/0748233716654827.
  • Takahashi R, Ito M, Kawamoto T. 2021. The road to practical application of cadmium phytoremediation using rice. Plants. 10(9):1926. doi: 10.3390/plants10091926.
  • Tariq SR, Shafiq M, Chotana GA. 2016. Distribution of heavy metals in the soils associated with the commonly used pesticides in cotton fields. Scientifica. 2016:1–11. doi: 10.1155/2016/7575239.
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. 2012. Heavy metal toxicity and the environment. Exp Suppl. 101:133–164. doi: 10.1007/978-3-7643-8340-4_6.
  • Thornton I. 1981. Geochemical aspects of the distribution and forms of heavy metals in soils. In: Lepp, N.W. editor. Effect of heavy hetal pollution on plants: metals in the environment. Vol. II. London, UK: Applied Science Publishers. p. 1–34. doi: 10.1007/978-94-009-8099-0_1.
  • Tóth G, Hermann T, Da Silva MR, Montanarella L. 2016. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int. 88:299–309. doi: 10.1016/j.envint.2015.12.017.
  • United States Environmental Protection Agency (USEPA). 2002. Supplemental guidance for developing soil screening levels for superfund sites. Office of Solid Waste and Emergency Response, Washington, D.C. http://www.epa.gov/superfund/health/conmedia/soil/index.htm.
  • Valtcho D Z, Lyle E C, Baoshan X, Niels E. N, Andrew W. 2008. Aromatic plant production on metal contaminated soils. Sci Total Environ. 395(2–3):51–62. doi: 10.1016/j.scitotenv.2008.01.041.
  • Vaněk A, Borůvka L, Drábek O, Mihaljevič M, Komárek M. 2005. Mobility of lead, zinc and cadmium in alluvial soils heavily polluted by smelting industry. Plant Soil Environ. 51(7):316–321. doi: 10.17221/3592-PSE.
  • Vangronsveld J, Colpaert J, Van Tichelen K. 1996. Reclamation of a bare industrial area contaminated by non-ferrous metals: physico-chemical and biological evaluation of the durability of soil treatment and revegetation. Environ Pollut. 94(2):131–140. doi: 10.1016/s0269-7491(96)00082-6.
  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen J, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, et al. 2009. Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res Int. 16(7):765–794. doi: 10.1007/s11356-009-0213-6.
  • Vangronsveld J, Sterckx J, Van Assche F, Clijsters H. 1995. Rehabilitation studies on an old non-ferrous waste dumping ground: effects of revegetation and metal immobilization by beringite. J Geochem Explor. 52(1–2):221–229. doi: 10.1016/0375-6742(94)00045-D.
  • Verma SK, Singh K, Gupta AK, Pandey VC, Trivedi P, Verma RK, Patra DD. 2014. Aromatic grasses for phytomanagement of coal fly ash hazards. Ecol Eng. 73:425–428. doi: 10.1016/j.ecoleng.2014.09.106.
  • Vithanage M, Dabrowska BB, Mukherjee B, Sandhi A, Bhattacharya P. 2012. Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environ Chem Lett. 10(3):217–224. doi: 10.1007/s10311-011-0349-8.
  • Wuana RA, Okieimen FE. 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology. 2011:1–20. doi: 10.5402/2011/402647.
  • Yang S, Liao B, Yang Z, Chai L, Li J. 2016. Revegetation of extremely acid mine soils based on aided phytostabilization: a case study from southern China. Sci Total Environ. 562:427–434. doi: 10.1016/j.scitotenv.2016.03.208.
  • Ye L, Chen Y, Chen Y, Qian L, Xiong W, Xu J, Jiang J. 2020. Phytomanagement of a chromium-contaminated soil by a high-value plant: phytostabilization of heavy metal contaminated site. BioRes. 15(2):3545–3565. doi: 10.15376/biores.15.2.3545-3565.
  • Yu G, Jiang P, Fu X, Liu J, Sunahara GI, Chen Z, Xiao H, Lin F, Wang X. 2020. Phytoextraction of cadmium-contaminated soil by Celosia argentea Linn.: a long-term field study. Environ Pollut. 266(Pt 1):115408. doi: 10.1016/j.envpol.2020.115408.
  • Zhang C. 2019. Soil and groundwater remediation: fundamentals, practices and sustainability. Hoboken, NJ: John Wiley & Sons, Inc.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.