236
Views
2
CrossRef citations to date
0
Altmetric
Research Article

KMnO4-oxidized whole pine needle based adsorbent for selective and efficient removal of cationic dyes

, , , , , & show all

References

  • Abbas M. 2020. Experimental investigation of activated carbon prepared from apricot stones material (ASM) adsorbent for removal of malachite green (MG) from aqueous solution. Adsorpt Sci Technol. 38(1–2):24–45. doi: 10.1177/0263617420904476.
  • Abdulhameed AS, Jawad AH, Kashi E, Radzun KA, ALOthman ZA, Wilson LD. 2022. Insight into adsorption mechanism, modeling, and desirability function of crystal violet and methylene blue dyes by microalgae: Box-Behnken design application. Algal Research. 67:102864. doi: 10.1016/j.algal.2022.102864.
  • Abualnaja KM, Alprol AE, Ashour M, Mansour AT. 2021. Influencing multi-walled carbon nanotubes for the removal of ismate violet 2r dye from wastewater: isotherm, kinetics, and thermodynamic studies. Appl Sci. 11(11):4786. doi: 10.3390/app11114786.
  • Adawy A, Mesallamy SE, Badr E, Abdeen Z. 2021. Surface properties and biological activity of the synthesized polymeric surfactant and its complexes. Lett Appl NanoBioSci. 11:3678–3688. doi: 10.33263/lianbs113.36783688.
  • Anushree C, Philip J. 2019. Efficient removal of methylene blue dye using cellulose capped Fe3O4 nanofluids prepared using oxidation-precipitation method. Colloids Surf, A. 567:193–204. doi: 10.1016/j.colsurfa.2019.01.057.
  • Araújo CST, Almeida ILS, Rezende HC, Marcionilio SMLO, Léon JJL, de Matos TN. 2018. Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem. J. 137:348–354. doi: 10.1016/j.microc.2017.11.009.
  • Arora C, Kumar P, Soni S, Mittal J, Mittal A, Singh B. 2020. Efficient removal of malachite green dye from aqueous solution using Curcuma caesia-based activated carbon. DWT. 195:341–352. doi: 10.5004/dwt.2020.25897.
  • Aurich A, Hofmann J, Oltrogge R, Wecks M, Gläser R, Blömer L, Mauersberger S, Müller RA, Sicker D, Giannis A. 2017. Improved isolation of microbiologically produced (2R,3S)-isocitric acid by adsorption on activated carbon and recovery with methanol. Org Process Res Dev. 21(6):866–870. doi: 10.1021/acs.oprd.7b00090.
  • Bahrodin MB, Zaidi NS, Hussein N, Sillanpää M, Prasetyo DD, Syafiuddin A. 2021. Recent advances on the coagulation-based treatment of wastewater: transition from chemical to natural coagulant. Curr Pollution Rep. 7(3):379–391. doi: 10.1007/s40726-021-00191-7.
  • Bakar AHBA, Koay YS, Ching YC, Abdullah LC, Choong TSY, Alkhatib M, Mobarekeh MN, Zahri NAM. 2016. Removal of fluoride using quaternized palm kernel shell as adsorbents: equilibrium isotherms and kinetics studies. BioResour. 11(2):4485–4511. doi: 10.15376/biores.11.2.4485-4511.
  • Bansal S, Pandey PK, Upadhayay S. 2021. Methylene blue dye removal from wastewater using ailanthus excelsa roxb as adsorbent. Water Conserv Sci Eng. 6(1):1–9. doi: 10.1007/s41101-020-00097-3.
  • Bayramoglu G, Arica MY. 2018. Adsorption of Congo Red dye by native amine and carboxyl modified biomass of Funalia trogii: isotherms, kinetics and thermodynamics mechanisms. Korean J Chem Eng. 35(6):1303–1311. doi: 10.1007/s11814-018-0033-9.
  • Chakraborty R, Asthana A, Singh AK, Jain B, Susan ABH. 2022. Adsorption of heavy metal ions by various low-cost adsorbents: a review. Int J Environ Anal Chem. 102(2):342–379. doi: 10.1080/03067319.2020.1722811.
  • Darwesh OM, Abd El-Latief AH, Abuarab ME, Kasem MA. 2021. Enhancing the efficiency of some agricultural wastes as low-cost absorbents to remove textile dyes from their contaminated solutions. Biomass Convers Biorefin. 13:1241–1250. doi: 10.1007/s13399-020-01142-w.
  • Fabbricino M, Pontoni L. 2016. Use of non-treated shrimp shells for textile dye removal from wastewater. J Environ Chem Eng. 4(4):4100–4106. doi: 10.1016/j.jece.2016.08.028.
  • Gautam D, Kumari S, Ram B, Chauhan GS, Chauhan K. 2018. A new hemicellulose-based adsorbent for malachite green. J Environ Chem Eng. 6(4):3889–3897. doi: 10.1016/j.jece.2018.05.029.
  • Ghorbani S, Eyni H, Bazaz SR, Nazari H, Asl LS, Zaferani H, Kiani V, Mehrizi AA, Soleimani M. 2018. Hydrogels based on cellulose and its derivatives: applications, synthesis, and characteristics. Polym Sci Ser A. 60(6):707–722. doi: 10.1134/S0965545X18060044.
  • Gičević A, Hindija L, Karačić A. 2020. Toxicity of azo dyes in the pharmaceutical industry. IFMBE Proc. 73:581–587. doi: 10.1007/978-3-030-17971-7_88.
  • González-López ME, Laureano-Anzaldo CM, Pérez-Fonseca AA, Arellano M, Robledo-Ortíz JR. 2022. A critical overview of adsorption models linearization: methodological and statistical inconsistencies. Sep Purif Rev. 51(3):358–372. doi: 10.1080/15422119.2021.1951757.
  • Hammud HH, Shmait A, Hourani N. 2015. Removal of Malachite Green from water using hydrothermally carbonized pine needles. RSC Adv. 5(11):7909–7920. doi: 10.1039/C4RA15505J.
  • Hanafi NAM, Abdulhameed AS, Jawad AH, ALOthman ZA, Yousef TA, Al Duaij OK, Alsaiari NS. 2022. Optimized removal process and tailored adsorption mechanism of crystal violet and methylene blue dyes by activated carbon derived from mixed orange peel and watermelon rind using microwave-induced ZnCl2 activation. Biomass Conv Bioref. 12:1–13. doi: 10.1007/s13399-022-03646-z.
  • Hao Y, Ma H, Proietto F, Galia A, Scialdone O. 2022. Electrochemical treatment of wastewater contaminated by organics and containing chlorides: effect of operative parameters on the abatement of organics and the generation of chlorinated by-products. Electrochim Acta. 402:139480. doi: 10.1016/j.electacta.2021.139480.
  • Hu N, Chen D, Guan QQ, Peng L, Zhang J, He L, Shi Y. 2022. Preparation of hemicellulose-based hydrogels from biomass refining industrial effluent for effective removal of methylene blue dye. Environ Technol. 43(4):489–499. doi: 10.1080/09593330.2020.1795930.
  • Hussein TK, Jasim NA. 2021. A comparison study between chemical coagulation and electro-coagulation processes for the treatment of wastewater containing reactive blue dye. Mater Today. 42:1946–1950. doi: 10.1016/j.matpr.2020.12.240.
  • Ibraheem AM, Kamalakkannan J. 2020. Sustainable scientific advancements modified Ag2O-ZnO thin films characterization and application of photocatalytic purification of carcinogenic dye in deionizer water and contaminated sea water solutions and synthetic, natural based dye-sensitized solar. Mater Sci Energy Technol. 3:183–192. doi: 10.1016/j.mset.2019.09.010.
  • Jamwal P, Chauhan GS, Kumar P, Kumari B, Kumar K, Chauhan S. 2023. A study in the synthesis of new Pinus wallichiana derived spherical nanocellulose hydrogel and its evaluation as malachite green adsorbent. Sustain Chem Pharm. 32:2352–5541. doi: 10.1016/j.scp.2022.100950.+.
  • Jjagwe J, Olupot PW, Menya E, Kalibbala HM. 2021. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: a review. J Bioresour Bioprod. 6(4):292–322. doi: 10.1016/j.jobab.2021.03.003.
  • Kheradmand A, Negarestani M, Mollahosseini A, Shayesteh H, Farimaniraad H. 2022. Low-cost treated lignocellulosic biomass waste supported with FeCl3/Zn(NO3)2 for water decolorization. Sci Rep. 12(1):16442. doi: 10.1038/s41598-022-20883-4.
  • Kim S, Nam SN, Jang A, Jang M, Park CM, Son A, Her N, Heo J, Yoon Y. 2022. Review of adsorption–membrane hybrid systems for water and wastewater treatment. Chemosphere. 286(Pt 3):131916. doi: 10.1016/j.chemosphere.2021.131916.
  • Kumari S, Chauhan GS, Monga S, Kaushik A, Ahn JH. 2016. New lignin-based polyurethane foam for wastewater treatment. RSC Adv. 6(81):77768–77776. doi: 10.1039/C6RA13308H.
  • Li K, Yan J, Zhou Y, Li B, Li X. 2021. β-cyclodextrin and magnetic graphene oxide modified porous composite hydrogel as a superabsorbent for adsorption cationic dyes: adsorption performance, adsorption mechanism and hydrogel column process investigates. J Mol Liq. 335:116291. doi: 10.1016/j.molliq.2021.116291.
  • Li X, Li Y. 2019. Adsorptive removal of dyes from aqueous solution by KMnO4-modified rice husk and rice straw. J Chem. 2019:1–9. doi: 10.1155/2019/8359491.
  • Li Z, Hanafy H, Zhang L, Sellaoui L, Schadeck Netto M, Oliveira MLS, Seliem MK, Luiz Dotto G, Bonilla-Petriciolet A, Li Q. 2020. Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: experiments, characterization and physical interpretations. J Chem Eng. 388:124263. doi: 10.1016/j.cej.2020.124263.
  • Lv D, Jiang G, Li C, Zhu Q, Wang Z. 2022. Ultrafast removal of methylene blue from water by Fenton-like pretreated peanut hull as biosorbent. GCLR. 15(1):93–107. doi: 10.1080/17518253.2021.2024277.
  • Mahto A, Mishra S. 2022. The removal of textile industrial Dye-RB-19 using Guar gum-based adsorbent with thermodynamic and kinetic evaluation parameters. Polym Bull. 79(5):3353–3378. doi: 10.1007/s00289-021-03663-4.
  • Mandal S, Bhattacharya TK, Verma AK, Haydary J. 2018. Optimization of process parameters for bio-oil synthesis from pine needles (Pinus roxburghii) using response surface methodology. Chem Pap. 72(3):603–616. doi: 10.1007/s11696-017-0306-5.
  • Manzoor K, Ahmad M, Ahmad S, Ikram S. 2019. Synthesis, characterization, kinetics, and thermodynamics of EDTA-modified chitosan-carboxymethyl cellulose as Cu (II) ion adsorbent. ACS Omega. 4(17):17425–17437. doi: 10.1021/acsomega.9b02214.
  • Moreno-Sader K, García-Padilla A, Realpe A, Acevedo-Morantes M, Soares JBP. 2019. Removal of heavy metal water pollutants (Co2+ and Ni2+) using polyacrylamide/sodium montmorillonite (PAM/Na-MMT) nanocomposites. ACS Omega. 4(6):10834–10844. doi: 10.1021/acsomega.9b00981.
  • Munagapati VS, Wen JC, Pan CL, Gutha Y, Wen JH. 2019. Enhanced adsorption performance of Reactive Red 120 azo dye from aqueous solution using quaternary amine-modified orange peel powder. J Mol Liq. 285:375–385. doi: 10.1016/j.molliq.2019.04.081.
  • Okolie JA, Nanda S, Dalai AK, Kozinski JA. 2021. Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valor. 12(5):2145–2169. doi: 10.1007/s12649-020-01123-0.
  • Yan W, Hoekman SK, Broch A, Coronella CJ. 2014. Effect of hydrothermal carbonization reaction parameters on the Properties of Hydrochar and Pellets. Environ Prog Sustainable Energy. 33(3):676–680. doi: 10.1002/ep.11974.
  • Putri KNA, Kaewpichai S, Keereerak A, Chinpa W. 2021. Facile green preparation of lignocellulosic biosorbent from lemongrass leaf for cationic dye adsorption. J Polym Environ. 29(6):1681–1693. doi: 10.1007/s10924-020-02001-5.
  • Ranote S, Chauhan GS, Joshi V. 2020. Etherified Moringa oleifera gum as rapid and effective dye adsorbents. J Chem Eng. 387:124055. doi: 10.1016/j.cej.2020.124055.
  • Rashid T, Kait CF, Murugesan T. 2016. A “fourier transformed infrared” compound study of lignin recovered from a formic acid process. Procedia Eng. 148:1312–1319. doi: 10.1016/j.proeng.2016.06.547.
  • Razali NS, Abdulhameed AS, Jawad AH, ALOthman ZA, Yousef TA, Al-Duaij OK, Alsaiari NS. 2022. High-surface-area-activated carbon derived from mango peels and seeds wastes via microwave-induced ZnCl2 activation for adsorption of methylene blue dye molecules: statistical optimization and mechanism. Molecules. 27(20):6947. doi: 10.3390/molecules27206947.
  • Saha N, Volpe M, Fiori L, Volpe R, Messineo A, Reza MT. 2020. Cationic dye adsorption on hydrochars of winery and citrus juice industries residues: performance, mechanism, and thermodynamics. Energies. 13(18):4686. doi: 10.3390/en13184686.
  • Sahmoune MN. 2019. Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents. Environ Chem Lett. 17(2):697–704. doi: 10.1007/s10311-018-00819-z.
  • Rangabhashiyam S, Balasubramanian P. 2018. Utilization of unconventional lignocellulosic waste biomass for the biosorption of toxic triphenylmethane dye malachite green from aqueous solution. Int J Phytoremediation. 20(6):624–633. doi: 10.1080/15226514.2017.1413329.
  • Shao J, Gu JD, Peng L, Luo S, Luo H, Yan Z, Wu G. 2014. Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II). J Hazard Mater. 272:83–88. doi: 10.1016/j.jhazmat.2014.03.013.
  • Shayesteh H, Rahbar-Kelishami A, Norouzbeigi R. 2016. Adsorption of malachite green and crystal violet cationic dyes from aqueous solution using pumice stone as a low-cost adsorbent: kinetic, equilibrium, and thermodynamic studies. Desalination Water Treat. 57(27):12822–12831. doi: 10.1080/19443994.2015.1054315.
  • Sheng PX, Ting YP, Chen JP, Hong L. 2004. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci. 275(1):131–141. doi: 10.1016/j.jcis.2004.01.036.
  • Sidi-Yacoub B, Oudghiri F, Belkadi M, Rodríguez-Barroso R. 2019. Characterization of lignocellulosic components in exhausted sugar beet pulp waste by TG/FTIR analysis. J Therm Anal Calorim. 138(2):1801–1809. doi: 10.1007/s10973-019-08179-8.
  • Slama HB, Chenari Bouket A, Pourhassan Z, Alenezi FN, Silini A, Cherif-Silini H, Oszako T, Luptakova L, Golińska P, Belbahri L. 2021. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl Sci. 11(14):6255. doi: 10.3390/app11146255.
  • Soniya M, Muthuraman G. 2015. Comparative study between liquid–liquid extraction and bulk liquid membrane for the removal and recovery of methylene blue from wastewater. J Ind Eng Chem. 30:266–273. doi: 10.1016/j.jiec.2015.05.032.
  • Takmil F, Esmaeili H, Mousavi SM, Hashemi SA. 2020. Nano-magnetically modified activated carbon prepared by oak shell for treatment of wastewater containing fluoride ion. Adv Powder Technol. 31(8):3236–3245. doi: 10.1016/j.apt.2020.06.015.
  • Tang Y, Zhao Y, Lin T, Li Y, Zhou R, Peng Y. 2019. Adsorption performance and mechanism of methylene blue by H3PO4-modified corn stalks. J Env Chem Eng 1. 7(6):103398. doi: 10.1016/j.jece.2019.103398.
  • Tara N, Siddiqui SI, Rathi G, Chaudhry SA, Asiri AM, Inamuddin. 2020. Nano-engineered adsorbent for the removal of dyes from water: a review. CAC. 16:14–40. doi: 10.2174/1573411015666190117124344.
  • Tkaczyk A, Mitrowska K, Posyniak A. 2020. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Sci Total Environ. 717:137222. doi: 10.1016/j.scitotenv.2020.137222.
  • Tong Y, Yan Q, Gao S, Xiong B, Tang X, Liu Z, Li P, Huang M, Wang Z, Le X, et al. 2021. Adsorption of Ni2+ in aqueous solution by KMnO4 modified biomass: investigation on adsorption kinetics and modification mechanism. Env Technol. 43(18):2855–2866. doi: 10.1080/09593330.2021.1906328.
  • Tran HN, You SJ, Chao HP. 2017. Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method. J Environ Manage. 188:322–336. doi: 10.1016/j.jenvman.2016.12.003.
  • Uddin MK, Abd Malek NN, Jawad AH, Sabar S. 2023. Pyrolysis of rubber seed pericarp biomass treated with sulfuric acid for the adsorption of crystal violet and methylene green dyes: an optimized process. Int J Phytoremediation. 25(4):393–402. doi: 10.1080/15226514.2022.2086214.
  • Volli V, Gollakota ARK, Shu CM. 2021. Comparative studies on thermochemical behavior and kinetics of lignocellulosic biomass residues using TG-FTIR and Py-GC/MS. Sci Total Environ. 792:148392. doi: 10.1016/j.scitotenv.2021.148392.
  • Wang S, Kwak JH, Islam MS, Naeth MA, Gamal El-Din M, Chang SX. 2020. Biochar surface complexation and Ni(II), Cu(II), and Cd(II) adsorption in aqueous solutions depend on feedstock type. Sci Total Environ. 712:136538. doi: 10.1016/j.scitotenv.2020.136538.
  • Yang G, Zhang D, Zhu G, Zhou T, Song M, Qu L, Xiong K, Li H. 2020. A Sm-MOF/GO nanocomposite membrane for efficient organic dye removal from wastewater. RSC Adv. 10(14):8540–8547. doi: 10.1039/d0ra01110j.
  • Zhang Y, Song X, Xu Y, Shen H, Kong X, Xu H. 2019. Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. J Clean Prod. 210:366–375. doi: 10.1016/j.jclepro.2018.11.041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.