230
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Rhizospheric soil chromium toxicity and its remediation using plant hyperaccumulators

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahmad W, Alharthy RD, Zubair M, Ahmed M, Hameed A, Rafique S. 2021. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci Rep. 11(1):17006. doi:10.1038/s41598-021-94616-4.
  • Ajmal M, Nomani AA, Ahmad A. 1984. Acute toxicity of chrome electroplating wastes to microorganisms: adsorption of chromate and chromium(VI) on a mixture of clay and sand. Water Air Soil Pollut. 23(2):119–127. doi:10.1007/BF00206970.
  • Alyazouri AH, Jewsbury RA, Tayim HA, Humphreys PN, Al-Sayah MH. 2013. Phytoextraction of Cr(VI) from soil using Portulaca oleracea. Toxicol Environ Chem Toxicol Environ Chem. 95(8):1338–1347. doi:10.1080/02772248.2013.877463.
  • Amin AS, Kassem MA. 2012. Chromium speciation in environmental samples using a solid phase spectrophotometric method. Spectrochim Acta A Mol Biomol Spectrosc. 96:541–547. doi:10.1016/j.saa.2012.05.020.
  • Ao M, Sun S, Deng T, Zhang F, Liu T, Tang Y, Li J, Wang S, Qiu R. 2022. Natural source of Cr (VI) in soil: the anoxic oxidation of Cr (III) by Mn oxides. J Hazard Mater. 433:128805. doi:10.1016/j.jhazmat.2022.128805.
  • Arshad M, Khan AH, Hussain A, Anees I, Iqbal M, Soja M, Linde G, Yousaf C, Badar-uz-Zaman S. 2017. The reduction of chromium (VI) phytotoxicity and phytoavailability to wheat (Triticum aestivum L.) using biochar and bacteria. Appl Soil Ecol. 114:90–98. doi: 10.1016/j.apsoil.2017.02.021.
  • Ashraf A, Bibi I, Niazi NK, Ok YS, Murtaza G, Shahid M, Kunhikrishnan A, Li D, Mahmood T. 2017. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. Int J Phytoremediat. 19(7):605–613. doi:10.1080/15226514.2016.1256372.
  • ATSDR. 2000. Toxicological profile for chromium (Final Report). Atlanta, GA: Agency for Toxic Substances and Disease Registry. p. 455.
  • Bala R, Thukral AK. 2011. Phytoremediation of Cr (VI) by Spirodela polyrrhiza (L.) Schleiden employing reducing and chelating agents. Int J Phytoremediation. 13(5):465–491. doi:10.1080/15226511003758861.
  • Ball JW, Izbicki J. 2004. Occurrence of hexavalent chromium in ground water in the western Mojave Desert, California. Appl. Geochem. 19(7):1123–1135. doi:10.1016/j.apgeochem.2004.01.011.
  • Banks M, Schwab A, Henderson C. 2006. Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere. 62(2):255–264. doi:10.1016/j.chemosphere.2005.05.020.
  • Bartlett RJ, James B. 1979. Behavior of Cr in soils: III. Oxidation. J Environ Qual. 8(1):31–35. doi:10.2134/jeq1979.00472425000800010008x.
  • Benoit DA. 1976. Toxic effects of hexavalent chromium on brook trout (Salvenilusfontinalis) and rainbow trout (Salmogairdneri). Water Res. 10(6):497–500. doi:10.1016/0043-1354(76)90185-8.
  • Bera AK, Kanta –Bokaria AK, Bokaria K. 1999. Effect of tannery effluent on seed germination, seedling growth and chloroplast pigment content in mungbean (Vigna radiate L. Wilczek). Environ Ecol. 17(4):958–961.
  • Biddappa CC, Bopaiah MG. 1989. Effect of heavy metals on the distribution of P. K, Ca, Mg and micronutrients in the cellular constituents of coconut leaf. J Plant Crops. 17:1–9.
  • Calder LM. 1988. Chromium contamination of groundwater. In Nriagu, JO, Nieboer, E, editors. Chromium in the natural. and human environments. Vol. 20. New York, NY, John Wiley & Sons, Advances in Environmental Science and Technology. p. 215–229.
  • Cary EE. 1982. Chromium in air, soil and natural waters. In Langård, S. editor. Topics in environmental health. 5. Biological and environmental aspects of chromium. New York, NY: Elsevier Biomedical Press. p. 49–64.
  • Castrillo G, Sánchez-Bermejo E, de Lorenzo L, Crevillén P, Fraile-Escanciano A, Tc M, Mouriz A, Catarecha P, Sobrino-Plata J, Olsson S, et al. 2013. WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell. 25(8):2944–2957. doi:10.1105/tpc.113.114009.
  • Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R. 2001. Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev. 25(3):335–347. doi:10.1111/j.1574-6976.2001.tb00581.x.
  • Chen Y, Han Y-H, Cao Y, Zhu Y-G, Rathinasabapathi B, Ma LQ. 2017. Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front Plant Sci. 8:268. doi:10.3389/fpls.2017.00268.
  • Cheng S, Shui Z, Yu R, Zhang X, Zhu S. 2018. Durability and environment evaluation of an eco-friendly cement-based material incorporating recycled chromium containing slag. J. Clean. Prod. 185:23–31. doi:10.1016/j.jclepro.2018.03.048.
  • Cheung KH, Gu J-D. 2007. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad. 59(1):8–15. doi:10.1016/j.ibiod.2006.05.002.
  • Chigbo C, Batty L. 2013. Effect of EDTA and citric acid on phytoremediation of Cr-B. Environ Sci Pollut Res Int. 20(12):8955–8963. doi:10.1007/s11356-013-1883-7.
  • Choppala GK, Bolan NS, Kunhikrishnan A, Skinner W, Seshadri B. 2013. Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Environ Sci Pollut Res Int. 22(12):69–78. doi:10.1007/s11356-013-1653-6.
  • Choppala G, Kunhikrishnan A, Seshadri B, Park JH, Bush R, Bolan N. 2018. Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. J Geochem. Explor. 184:255–260. doi:10.1016/j.gexplo.2016.07.012.
  • Christensen CH, Rass-Hansen J, Marsden CC, Taarning E, Egeblad K. 2008. The renewable chemicals industry. Chem Sus Chem. 1(4):283–289. doi:10.1002/cssc.200700168.
  • Costa M. 1997. Toxicity and carcinogenicicity of Cr(VI) in animal models and humans. Crit Rev Toxicol. 27(5):431–442. doi:10.3109/10408449709078442.
  • Covelo E, Vega F, Andrade M. 2007. Competitive sorption and desorption of heavy metals by individual soil components. J Hazard Mater. 140(1–2):308–315. doi:10.1016/j.jhazmat.2006.09.018.
  • Cumin W. 1827. Remarks on the medicinal properties of madar, and on the effects of bichromate of potass. on the human body. Edinb Med J. 28:295–312.
  • Dash P, Das BP. 2013. Bioremediation: an eco-friendly, bioengineering and cost effective technique for reducing the pollutant load of contaminated water and soil of industrial area. Biohelica. 3(1&2):72–80.
  • Das PK. 2018. Phytoremediation and nanoremediation: emerging techniques for treatment of acid mine drainage water. Def Life Sc Jl. 3(2):190–196. doi:10.14429/dlsj.3.11346.
  • Das PK, Das BP, Dash P. 2017. Hexavalent chromium induced toxicity and its remediation using macrophytes. Pollut. Res. 36(1):92–98. doi:10.1016/j.rhisph.2022.100543.
  • Das PK, Das BP, Dash P. 2018. Role of plant species as hyper-accumulators in the decontamination of hexavalent chromium contaminated soil. Indian J Environ Prot. 38(12):1016–1024.
  • Das PK, Das BP, Dash P. 2021. Chromite mining pollution, environmental impact, toxicity and phytoremediation: a review. Environ Chem Lett. 19(2):1369–1381. doi:10.1007/s10311-020-01102-w.
  • Das PK, Das BP, Dash P. 2022a. A super-tolerant bacteria strain improves phytoremediation of Cr (VI) contaminated soil with Pongamia pinnata. Rhizosphere. 22:100543. doi:10.1016/j.rhisph.2022.100543.
  • Das PK, Das BP, Dash P. 2022b. Analytical study on hexavalent chromium accumulation in plant parts of Pongamia pinnata (L.) Pierre and remediation of contaminated soil. JABB. 10(1):22–30. doi:10.7324/JABB.2021.100103.
  • Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS. 2002. Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth and gas exchange. J Plant Nutr. 25(11):2389–2407. doi:10.1081/PLN-120014702.
  • de Oliveira LM, Ma LQ, Santos JAG, Guilherme LRG, Lessl JT. 2014. Effects of arsenate, chromate, and sulfate on arsenic and chromium uptake and translocationby arsenic hyperaccumulator Pteris vittata L. Environ Pollut. 184:187–192. doi:10.1016/j.envpol.2013.08.025.
  • De Oliveira LM, Gress J, De J, Rathinasabapathi B, Marchi G, Chen Y, Ma LQ. 2016. Sulfate and chromate increased each other’s uptake and translocation in As-hyperaccumulator Pteris vittata. Chemosphere. 147:36–43. doi:10.1016/j.chemosphere.2015.12.088.
  • Dhal B, Thatoi HN, Das NN, Pandey BD. 2013. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater. 250-251:272–291. doi:10.1016/j.jhazmat.2013.01.048.
  • Di Palma L, Gueye MT, Petrucci E. 2015. Hexavalent chromium reduction in contaminated soil: a comparison between ferrous sulphate and nanoscale zero-valent iron. J Hazard Mater. 281:70–76. doi:10.1016/j.jhazmat.2014.07.058.
  • Dixit V, Pandey V, Shyam R. 2002. Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant Cell Environ. 25(5):687–693. doi:10.1046/j.1365-3040.2002.00843.x.
  • Dua A, Sawhney SK. 1991. Effect of chromium on activities of hydrolytic enzymes in germinating pea seeds. EEB. 31(2):133–139. doi:10.1016/0098-8472(91)90063-T.
  • Eleftheriou EP, Adamakis I-DS, Melissa P. 2012. Effects of hexavalent chromium on microtubule organization, ER distribution and callose deposition in root tip cells of Allium cepa L. Protoplasma. 249(2):401–416. doi:10.1007/s00709-011-0292-3.
  • Fishbein L. 1981. Sources, transport and alterations of metal compounds: an overview. I. Arsenic, beryllium, cadmium, chromium and nickel. Environ Health Perspect. 40:43–64. doi:10.1289/ehp.814043.
  • Frohne T, Diaz-Bone RA, Du Laing D, Rinklebe J. 2015. Impact of systematic change of redox potential on the leaching of Ba, Cr, Sr, and V from a riverine soil into water. J Soils Sediments. 15(3):623–633. doi:10.1007/s11368-014-1036-8.
  • Gad SC, Powers WJ, Dunn BJ, Hoffman GM, Siino KM, Walsh RD. 1986. Acute toxicity of four chromate salts. In Serrone DM, editor. Chromium Symposium 1986: an Update. Pittsburgh, PA: Industrial Health Foundation. p. 43–58.
  • Gangwar S, Singh VP. 2011. Indole acetic acid differently changes growth and nitrogen metabolism in Pisum sativum L. seedlings under chromium (VI) phytotoxicity: implication of oxidative stress. Sci. Hortic. 129(2):321–328. doi:10.1016/j.scienta.2011.03.026.
  • Gerhardt KE, Gerwing PD, Greenberg BM. 2017. Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci. 256:170–185. doi:10.1016/j.plantsci.2016.11.016.
  • Gopal R, Rizvi AH, Nautiyal N. 2009. Chromium alters iron nutrition and water relations of spinach. J Plant Nutr. 32(9):1551–1559. doi:10.1080/01904160903094313.
  • Gupta A, Ballal A. 2015. Unraveling the mechanism responsible for the contrasting tolerance of Synechocystis and Synechococcus to Cr(VI): enzymatic and nonenzymatic antioxidants. Aquat Toxicol. 164:118–e125. doi:10.1016/j.aquatox.2015.04.015.
  • Han FX, Sridhar BBM, Monts DL, Su Y. 2004. Phytoavailability and toxicity of trivalent and hexavalent chromium to Brasicca juncea. New Phytol. 162(2):489–499. doi:10.1111/j.1469-8137.2004.01027.x.
  • Hassan SM, Garrison AW. 1996. Distribution of chromium species between soil and porewater. Chem Soc Rev. 8(3–4):85–103. doi:10.1080/09542299.1996.11083273.
  • Hooda V. 2007. Phytoremediation of toxic metals from soil and waste water. J Environ Biol. 28(2):367.
  • Huffman EWD, Jr., Allaway WH. 1973. Growth of plants in solution culture containing low levels of chromium. Plant Physiol. 52(1):72–75. doi:10.1104/pp.52.1.72.
  • IARC. 1990. Chromium, Nickel and Welding, Vol 49. Lyon, France: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. p. 1–687.
  • IPCS. 1988. Chromium environmental health criteria, vol 61. Geneva: World Health Organization. p. 197.
  • IPCS. 2013. Inorganic chromium(VI) compounds. Concise International Chemical Assessment Documents. 78:1–123.
  • Islam MA, Angove MJ, Morton DW, Pramanik BK, Awual MR. 2020. A mechanistic approach of chromium (VI) adsorption onto manganese oxides and boehmite. J Environ Chem Eng. 8(2):103515. doi:10.1016/j.jece.2019.103515.
  • Jadia CD, Fulekar M. 2009. Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol. 8(6):921–928.
  • Jiang S, Yan X, Peacock CL, Zhang S, Li W, Zhang J, Feng X, Liu F, Yin H. 2020. Adsorption of Cr (VI) on Al-substituted hematites and its reduction and retention in the presence of Fe2+ under conditions similar to subsurface soil environments. J Hazard Mater. 390:122014. doi:10.1016/j.jhazmat.2019.122014.
  • Joutey NT, Bahafid W, Sayel H, EL N. 2013. Phytotoxic effect of hexavalent chromium on germination and seedling growth of seeds of different plant species. J Agricul Technol. 9(2):361–372.
  • Kabata-Pendias A. 2010. Trace elements in soils and plants. Boca Raton, FL: CRC Press.
  • Kanchinadham SBK, Narasimman L, Pedaballe V, Kalyanaraman C. 2015. Diffusion and leachability index studies on stabilization of chromium contaminated soil using fly ash. J Hazard Mater. 297:52–e58. doi:10.1016/j.jhazmat.2015.04.045.
  • Karthik C, Oves M, Thangabalu R, Sharma R, Santhosh SB, Arulselvi PI. 2016. Cellulosimicrobium funkei-like enhances the growth of Phaseolus vulgaris by modulating oxidative damage under Chromium (VI) toxicity. J Adv Res. 7(6):839–850. doi: 10.1016/j.jare.2016.08.007.
  • Katz SA, Salem H. 1994. The biological and environmental chemistry of chromium. New York: VCH Publishers, Inc.
  • Khan MY, Asghar HN, Jamshaid MU, Akhtar MJ, Zahir ZA. 2013. Effect of microbial inoculation on wheat growth and phytostabilization of chromium contaminated soil. Pak J Bot. 45(S1):27–34.
  • Kocik K, Havsky J. 1994. Effect of Sr and Cr on the quantity and quality of the biomass of field crops. Production and Utilization of agricultural and forest biomass for energy. Proceedings of a seminar held at Zyolen, Slovakia. pp. 168–178.
  • Kong Z, Mohamad OA, Deng Z, Liu X, Glick BR, Wei G. 2015. Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress. Environ Sci Pollut Res Int. 22(16):12479–12489. doi:10.1007/s11356-015-4530-7.
  • Kumar, Adarsh, Maleva, Maria, Bruno, L Benedict, Rajkumar, Mani, Tripti,. 2021. Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L. Chemosphere. 276:130038. doi:10.1016/j.chemosphere.2021.130038.
  • Kumar D, Tripathi DK, Chauhan DK. 2014. Phytoremediation potential and nutrient status of Barringtonia acutangula Gaerth. Tree seedlings grown under different chromium (CrVI) treatments. Biol Trace Elem Res. 157(2):164–174. doi:10.1007/s12011-013-9878-2.
  • Kumar P, Tokas J, Singal HR. 2019. Amelioration of chromium VI toxicity in Sorghum (Sorghum bicolor L.) using glycine betaine. Sci Rep. 9(1):16020. doi: 10.1038/s41598-019-52479-w.
  • Kumar S, Mehta J, Hazra S. 2009. In vitro studies on chromium and copper accumulation potential of Pongamia pinnata (L.) Pierre seedlings. Bioremed Biodiv Bioavailabil. 3(1):43–48.
  • Labra M, Grassi F, Imazio S, Fabio TD, Citterio S, Sgorbati S, Agradi E. 2004. Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere. 54(8):1049–1058. doi:10.1016/j.chemosphere.2003.10.024.
  • Levizou E, Zanni AA, Antoniadis V. 2019. Varying concentrations of soil chromium (VI) for the exploration of tolerance thresholds and phytoremediation potential of the oregano (Origanum vulgare). Environ Sci Pollut Res. 26(1):14–23. doi:10.1007/s11356-018-2658-y.
  • Li YY, Zhang TT, Ning Z, Chen JH, Hatfield K. 2020. Characteristics and applications of sewage sludge biochar modified by ferrous sulfate for remediating Cr (VI)-contaminated soils. Adv Civ Eng Adv Civ Eng. 2020:1–10. doi:10.1155/2020/6521638.
  • Liu J, Duan CQ, Zhang XH, Zhu YN, Hu C. 2009. Subcellular distribution of chromium in accumulating plant Leersia hexandra Swartz. Plant Soil. 322(1-2):187–195. doi:10.1007/s11104-009-9907-2.
  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ. 2008. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA. 105(29):9931–9935. doi:10.1073/pnas.0802361105.
  • Marieschi M, Gorbi G, Zanni C, Sardella A, Torelli A. 2015. Increase of chromium tolerance in Scenedesmus acutus after sulfur starvation: chromium uptake and compartmentalization in two strains with different sensitivities to Cr(VI). Aquat Toxicol. 167:124–e133. doi:10.1016/j.aquatox.2015.08.001.
  • Martí E, Sierra JC, Aliz J, Montserrat G, Vila X, Garau MA, Crua ∼ nas R. 2013. Ecotoxicity of Cr, Cd, and Pb on two mediterranean soils. Arch Environ Contam Toxicol. 64(3):377–387. doi:10.1007/s00244-012-9841-9.
  • Matsumoto ST, Mantovani MS, Malaguttii MIA, Dias AU, Fonseca IC, Marin-Morales MA. 2006. Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and Comet assay using the fish Oreochromisniloticus and chromosome aberrations in onion root-tips. Genet Mol Biol. 29(1):148–158. doi:10.1590/S1415-47572006000100028.
  • Medda S, Mondal NK. 2017. Chromium toxicity and ultrastructural deformation of Cicer arietinum with special reference of root elongation and coleoptile growth. Ann Agrar Sci. 15(3):396–401. doi: 10.1016/j.aasci.2017.05.022.
  • Mengel K, Kirkby EA. 1987. Principles of plant nutrition. Switzerland: International Potash Institute.
  • Murtaza S, Iqbal MZ, Shafiq M, Kabir M, Farooq ZU. 2018. Effects of chromium on seed germination and seedling growth of Mung Bean Vigna Radiata (L.) R. Wilczek (Fabaceae). Res J Life Sci Bioinform Pharmaceut Chem Sci. 4(6):357–364. doi: 10.26479/2018.0406.27.
  • Montes-Holguin MO, Peralta-Videa JR, Meitzner G, Martinez–Martinez A, de la Rosa G, Castillo-Michel HA, Gardea-Torresdey JL. 2006. Biochemical and spectroscopic studies of the response of Convolvulus arvensis L. to chromium(III) and chromium(VI) stress. Environ Toxicol Chem. 25(1):220–226. doi:10.1897/05-089r.1.
  • Moral R, Pedreno JN, Gomez I, Mataix J. 1995. Effects of chromium on the nutrient element content and morphology of tomato. J. Plant Nutr. 18(4):815–822. doi:10.1080/01904169509364940.
  • Nichols PB, Couch JD, Al-Hamdani SH. 2000. Selected physiological responses of Salvinia minima to different chromium concentrations. Aquat. Bot. 68(4):313–319. doi:10.1016/S0304-3770(00)00128-5.
  • Nriagu JO, Pacyna JM. 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature. 333(6169):134–139. doi:10.1038/333134a0.
  • Otero XL, Macias F. 2003. Spatial variation in pyritization of trace metals in saltmarsh soils. Biogeochemistry. 62(1):59–86. doi:10.1023/A:1021115211165.
  • Panda SK. 2007. Chromium mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J Plant Physiol. 164(11):1419–1428. doi:10.1016/j.jplph.2007.01.012.
  • Pandey V, Dixit V, Shyam R. 2005. Antioxidative responses in relation to growth of mustard (Brassica juncea cv. PusaJaikisan) plants exposed to hexavalent chromium. Chemosphere. 61(1):40–47. doi:10.1016/j.chemosphere.2005.03.026.
  • Parkhurst HJ. 1925. Dermatosis industrialis in a blueprint worker due to chromium compounds. Arch Dermatol. 12(2):253–256. doi:10.1001/archderm.1925.02370080097008.
  • Pinto AP, de Varennes A, Fonseca R, Teixeira DM. 2014. Phytoremediation of soils contaminated with heavy metals. Phytoremed Manage Environ Contam. 1:133. doi:10.1016/j.jenvman.2017.10.033.
  • Prado C, Rodrı’guez-Montelongo L, González JA, Pagano EA, Hilal M, Prado FE. 2010. Uptake of chromium by Salvinia minima: effect on plant growth, leaf respiration and carbohydrate metabolism. J Hazard Mater. 177(1–3):546–553. doi:10.1016/j.jhazmat.2009.12.067.
  • Rai V, Mehrotra S. 2008. Chromium-induced changes in ultramorphology and secondary metabolites of Phyllanthusamarus Schum&Thonn – an hepatoprotective plant. Environ Monit Assess. 147(1–3):307–315. doi:10.1007/s10661-007-0122-4.
  • Ranieri E, D’Onghia G, Ranieri F, Petrella A, Spagnolo V, Ranieri AC. 2021. Phytoextraction of Cr (VI)-contaminated soil by phyllostachys pubescens: a case study. Toxics. 9(11):312. doi:10.3390/toxics9110312.
  • Reeves RD, Baker AJM. 2000. Metal-accumulating plants. In Raskin I, Ensley BD, editors. Phytoremediation of toxic metals: using plants to clean up the environment. New York: Wiley. p. 193–230.
  • Revathi K, Haribabu T, Sudha P. 2011. Phytoremediation of chromium contaminated soil using sorghum plant. Int. J. Environ. Sci. 2(2):417e428.
  • Rock ML, James B, Helz GR. 2001. Hydrogen peroxide effects on Cr oxidation state and solubility in four diverse, Cr-enriched soils. Environ Sci Technol. 35(20):4054–4059. doi:10.1021/es010597y.
  • Sahoo RK, Rani V, Tuteja N. 2021. Azotobacter vinelandii helps to combat chromium stress in rice by maintaining antioxidant machinery. 3 Biotech. 11(6):1–11. doi:10.1007/s13205-021-02835-3.
  • Saleh FY, Parkerton TF, Lewis RV, Huang JH, Dickson KL. 1989. Kinetics of chromium transformations in the environment. Sci Total Environ. 86(1–2):25–41. doi:10.1016/0048-9697(89)90190-3.
  • Saravanan A, Jayasree R, Hemavathy RV, Jeevanantham S, Hamsini S, Senthil Kumar P, Yaashikaa RR, Manivasagan V, Yuvaraj Y. 2019. Phytoremediation of Cr(VI) ion contaminated soil using Black gram (Vigna mungo): assessment of removal capacity. J. Environ. Chem. Eng. 7(3):103052. doi:10.1016/j.jece.2019.103052.
  • Sela M, Garty J, Tel-Or E. 1989. The accumulation and the effect of heavy metals on the water fern Azollafiliculoides. New Phytol. 112(1):7–12. doi:10.1111/j.1469-8137.1989.tb00302.x.
  • Seshadri B, Bolan NS, Naidu R. 2015. Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation. J Soil Sci Plant Nutr. 15(2):43. doi:10.4067/S0718-95162015005000043.
  • Shaheen SM, Rinklebe J. 2014. Geochemical fractions of chromium, copper, and zinc and their vertical distribution in soil profiles along the Central Elbe River, Germany. Geoderma. 228–229:142–159. doi:10.1016/j.geoderma.2013.10.012.
  • Shahid M, Pinelli E, Dumat C. 2012. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater. 219–220:1–12. doi:10.1016/j.jhazmat.2012.01.060.
  • Shahid M, Xiong T, Castrec-Rouelle M, Leveque T, Dumat C. 2013. Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves. J Environ Sci. 25(12):2451–2459. doi:10.1016/S1001-0742(12)60197-1.
  • Shanker AK, Djanaguiraman M, Sudhagar R, Chandrashekar CN, Pathmanabhan G. 2004. Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites in chromium speciation stress in green gram roots. Plant Sci. 166(4):1035–1043. doi:10.1016/j.plantsci.2003.12.015.
  • Shanker AK, Pathmanabhan G. 2004. Speciation dependant antioxidative response in roots and leaves of Sorghum (Sorghum bicolor (L.)Moench cv. CO 27) under Cr(III) and Cr(VI) stress. Plant Soil. 265(1–2):141–151. doi:10.1007/s11104-005-0332-x.
  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S. 2005. Chromium toxicity in plants. Environ Int. 31(5):739–753. doi:10.1016/j.envint.2005.02.003.
  • Sharma S, Adholeya A. 2010. Filamentous saprobe fungi: An important component of mycorrhizosphere for growth and heavy metal resistance in AM-plants. Mycorrhiza News. 22(1):21–25.
  • Shi Z, Peng S, Lin X, Liang Y, Lee SZ, Allen HE. 2020. Predicting Cr (VI) adsorption on soils: the role of the competition of soil organic matter. Environ Sci Process Impacts. 22(1):95–104. doi:10.1039/C9EM00477G.
  • Shi L, Deng X, Yang Y, Jia Q, Wang C, Shen Z, Chen Y. 2019. A Cr (VI)-tolerant strain, Pisolithus sp1, with a high accumulation capacity of Cr in mycelium and highly efficient assisting Pinus thunbergii for phytoremediation. Chemosphere. 224:862–872. doi:10.1016/j.chemosphere.2019.03.015.
  • Shukla O, Dubey S, Rai U. 2007. Preferential accumulation of cadmium and chromium: toxicity in Bacopa monnieri L. under mixed metal treatments. Bull Environ Contam Toxicol. 78(3–4):252–257. doi:10.1007/s00128-007-9155-1.
  • Singh M, Kushwaha BK, Singh S, Kumar V, Singh VP, Prasad SM. 2017. Sulphur alters chromium (VI) toxicity in Solanum melongena seedlings: role of sulphur assimilation and sulphur-containing antioxidants. Plant Physiol Biochem. 112:183–192. doi: 10.1016/j.plaphy.2016.12.024.
  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK. 2013. Chromium toxicity and tolerance in plants. Environ Chem Lett. 11(3):229–254. doi:10.1007/s10311-013-0407-5.
  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L. 2010. Chromium stress in paddy:(i) nutrient status of paddy under chromium stress;(ii) phytoremediation of chromium by aquatic and terrestrial weeds. CR Biol. 333(8):597–607. doi: 10.1016/j.crvi.2010.03.002.
  • Taghipour M, Jalali M. 2016. Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents. Chemosphere. 155:395–404. doi:10.1016/j.chemosphere.2016.04.063.
  • Tiwari KK, Dwivedi S, Singh NK, Rai UN, Tripathi RD. 2009. Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients. JEB. 30:389–394.
  • Turner MA, Rust RH. 1971. Effects of chromium on growth and mineral nutrition of soybeans. SSSAJ. 35(5):755–758. doi:10.2136/sssaj1971.03615995003500050035x.
  • USEPA. 1990. A plain English guide to the EPA part 503 bio solids rule. EPA/882/R-93-003. Washington DC: USEPA Office of Wastewater Management.
  • United States Environmental Protection Agency. 1996. Soil Screening Guidance: technical Background. EPA/540/R-95/128.
  • Wang H. 1999. Clastogenicity of chromium contaminated soil samples evaluated by Vicia root-micronucleus assay. Mutat Res. 426(2):147–149. doi:10.1016/S0027-5107(99)00058-5.
  • Wang P, Zhang W, Mao C, Xu G, Zhao FJ. 2016. The role of OsPT8in arsenate uptake and varietal difference in arsenatetolerance in rice. J Exp Bot. 67(21):6051–6059. doi:10.1093/jxb/erw362.
  • Whitaker AH, Peñ J, Amor M, Duckworth OW. 2018. Cr (VI) uptake and reduction by biogenic iron (oxyhydr) oxides. Environ Sci Process Impacts. 20(7):1056–1068. doi:10.1039/c8em00149a.
  • Wilson G, Al-Hamdani SH. 1997. Effects of chromium(VI) and humic substances on selected physiological responses of Azollacaroliniana. Am. Fern J. 87(1):17–27. doi:10.2307/1547244.
  • Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ. 2011. Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol. 157(1):498–508. doi:10.1104/pp.111.178921.
  • Xiao W, Ye X, Yang X, Li T, Zhao S, Zhang Q. 2015. Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils. Ecotoxicol Environ Saf. 113:439–e445. doi:10.1016/j.ecoenv.2014.12.030.
  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z. 2020. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci. 11:359. doi:10.3389/fpls.2020.00359.
  • Zaccheo P, Cocucci M, Cocucci S. 1985. Effects of Cr on proton extrusion, potassium uptake and transmembrane electric potential in maize root segments. Plant Cell Environ. 8(9):721–726. doi:10.1111/1365-3040.ep11611843.
  • Zayed AM, Terry N. 2003. Chromium in the environment: factors affecting biological remediation. Plant and Soil. 249(1):139–156. doi:10.1023/A:1022504826342.
  • Zeng F, Zhou W, Qiu B, Ali S, Wu F, Zhang G. 2011. Subcellular distribution and chemical forms of chromium in rice plants suffering from different levels of chromium toxicity. Z Pflanzenernähr Bodenk. 174(2):249–256. doi:10.1002/jpln.200900309.
  • Zhang D, Jiang L, Shao Y, Chai B, Li C. 2010. Variations in germination and endogenous hormone contents of wheat cultivars under Cr stress. Chin J Appl Environ Biol. 2009(5):602–605. doi:10.3724/SP.J.1145.2009.00602.
  • Zhang T, Wang T, Wang W, Liu B, Li W, Liu Y. 2020. Reduction and stabilization of Cr (VI) in soil by using calcium polysulfide: catalysis of natural iron oxides. Environ Res. 190:109992. doi:10.1016/j.envres.2020.109992.
  • Zhang XH, Liu J, Huang HT, Chen J, Zhu YN, Wang DQ. 2007. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere. 67(6):1138–1143. doi:10.1016/j.chemosphere.2006.11.04.
  • Zou JH, Wang M, Jiang WS, Liu DH. 2006. Effects of hexavalent chromium (VI) on root growth and cell division in root tip cells of Amaranthus Viridis L. Pak. J. Bot. 38(3):673–681.
  • Zulfiqar A, Paulose B, Chhikara S, Dhankher OP. 2011. Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica. Environ Pollut. 159(10):3123–3128. doi:10.1016/j.envpol.2011.06.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.