592
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Plant responses to per- and polyfluoroalkyl substances (PFAS): a molecular perspective

, , &

References

  • Abdullah-Zawawi M-R, Govender N, Harun S, Muhammad NAN, Zainal Z, Mohamed-Hussein Z-A. 2022. Multi-omics approaches and resources for systems-level gene function prediction in the plant kingdom. Plants. 11(19):2614. doi: 10.3390/plants11192614.
  • Butt CM, Muir DCG, Mabury SA. 2014. Biotransformation pathways of fluorotelomer-based polyfluoroalkyl substances: a review. Environ Toxicol Chem. 33(2):243–267. doi: 10.1002/etc.2407.
  • Chen C-H, Yang S-H, Liu Y, Jamieson P, Shan L, Chu K-H. 2020. Accumulation and phytotoxicity of perfluorooctanoic acid and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate in Arabidopsis thaliana and Nicotiana benthamiana. Environ Pollut. 259:113817. doi: 10.1016/j.envpol.2019.113817.
  • Dickman RA, Aga DS. 2022. A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (PFAS). J Hazard Mater. 436:129120. doi: 10.1016/j.jhazmat.2022.129120.
  • Ebinezer LB, Battisti I, Sharma N, Ravazzolo L, Ravi L, Trentin AR, Barion G, Panozzo A, Dall’Acqua S, Vamerali T, et al. 2022. Perfluorinated alkyl substances affect the growth, physiology and root proteome of hydroponically grown maize plants. J Hazard Mater. 438:129512. doi: 10.1016/j.jhazmat.2022.129512.
  • Fan L, Tang J, Zhang D, Ma M, Wang Y, Han Y. 2020. Investigations on the phytotoxicity of perfluorooctanoic acid in Arabidopsis thaliana. Environ Sci Pollut Res Int. 27(1):1131–1143. doi: 10.1007/s11356-019-07018-5.
  • Ghisi R, Vamerali T, Manzetti S. 2019. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: a review. Environ Res. 169:326–341. doi: 10.1016/j.envres.2018.10.023.
  • Huang D, Xiao R, Du L, Zhang G, Yin L, Deng R, Wang G. 2021. Phytoremediation of poly- and perfluoroalkyl substances: a review on aquatic plants, influencing factors, and phytotoxicity. J Hazard Mater. 418:126314. doi: 10.1016/j.jhazmat.2021.126314.
  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 7(9):405–410. doi: 10.1016/S1360-1385(02)02312-9.
  • Lal MS, Megharaj M, Naidu R, Bahar MM. 2020. Uptake of perfluorooctane sulfonate (PFOS) by common home-grown vegetable plants and potential risks to human health. Environ Technol Innov. 19:100863. doi: 10.1016/j.eti.2020.100863.
  • Lesmeister L, Lange FT, Breuer J, Biegel-Engler A, Giese E, Scheurer M. 2021. Extending the knowledge about PFAS bioaccumulation factors for agricultural plants – A review. Sci Total Environ. 766:142640. doi: 10.1016/j.scitotenv.2020.142640.
  • Li J, Sun J, Li P. 2022a. Exposure routes, bioaccumulation and toxic effects of per- and polyfluoroalkyl substances (PFASs) on plants: a critical review. Environ Int. 158:106891. doi: 10.1016/j.envint.2021.106891.
  • Li P, Li J. 2021. Perfluorooctanoic acid (PFOA) caused oxidative stress and metabolic disorders in lettuce (Lactuca sativa) root. Sci Total Environ. 770:144726. doi: 10.1016/j.scitotenv.2020.144726.
  • Li P, Oyang X, Xie X, Li Z, Yang H, Xi J, Guo Y, Tian X, Liu B, Li J, et al. 2020a. Phytotoxicity induced by perfluorooctanoic acid and perfluorooctane sulfonate via metabolomics. J Hazard Mater. 389:121852. doi: 10.1016/j.jhazmat.2019.121852.
  • Li P, Sun J, Xie X, Li Z, Huang B, Zhang G, Li J, Xiao Z. 2021a. Stress response and tolerance to perfluorooctane sulfonate (PFOS) in lettuce (Lactuca sativa). J Hazard Mater. 404(Pt B):124213. doi: 10.1016/j.jhazmat.2020.124213.
  • Li P, Xiao Z, Sun J, Oyang X, Xie X, Li Z, Tian X, Li J. 2020b. Metabolic regulations in lettuce root under combined exposure to perfluorooctanoic acid and perfluorooctane sulfonate in hydroponic media. Sci Total Environ. 726:138382. doi: 10.1016/j.scitotenv.2020.138382.
  • Li R, Tang T, Qiao W, Huang J. 2020c. Toxic effect of perfluorooctane sulfonate on plants in vertical-flow constructed wetlands. J Environ Sci. 92:176–186. doi: 10.1016/j.jes.2020.02.018.
  • Li X, Hua Z, Wu J, Gu L. 2021b. Removal of perfluoroalkyl acids (PFAAs) in constructed wetlands: considerable contributions of submerged macrophytes and the microbial community. Water Res. 197:117080. doi: 10.1016/j.watres.2021.117080.
  • Li X, Hua Z, Zhang J, Gu L. 2022b. Ecotoxicological responses and removal of submerged macrophyte Hydrilla verticillate to multiple perfluoroalkyl acid (PFAA) pollutants in aquatic environments. Sci Total Environ. 825:153919. doi: 10.1016/j.scitotenv.2022.153919.
  • Li Y, Liu X, Zheng X, Yang M, Gao X, Huang J, Zhang L, Fan Z. 2021d. Toxic effects and mechanisms of PFOA and its substitute GenX on the photosynthesis of Chlorella pyrenoidosa. Sci Total Environ. 765:144431. doi: 10.1016/j.scitotenv.2020.144431.
  • Li Y, He L, Lv L, Xue J, Wu L, Zhang Z, Yang L. 2021c. Review on plant uptake of PFOS and PFOA for environmental cleanup: potential and implications. Environ Sci Pollut Res Int. 28(24):30459–30470. doi: 10.1007/s11356-021-14069-0.
  • Liu X, Zheng X, Zhang L, Li J, Li Y, Huang H, Fan Z. 2022. Joint toxicity mechanisms of binary emerging PFAS mixture on algae (Chlorella pyrenoidosa) at environmental concentration. J Hazard Mater. 437:129355. doi: 10.1016/j.jhazmat.2022.129355.
  • Mei W, Sun H, Song M, Jiang L, Li Y, Lu W, Ying G-G, Luo C, Zhang G. 2021. Per- and polyfluoroalkyl substances (PFASs) in the soil–plant system: sorption, root uptake, and translocation. Environ Int. 156:106642. doi: 10.1016/j.envint.2021.106642.
  • Omagamre EW, Mansourian Y, Liles D, Tolosa T, Zebelo SA, Pitula JS. 2022. Perfluorobutanoic acid (PFBA) induces a non-enzymatic oxidative stress response in soybean (Glycine max L. Merr.). IJMS. 23(17):9934. doi: 10.3390/ijms23179934.
  • Qi Y, Cao H, Pan W, Wang C, Liang Y. 2022. The role of dissolved organic matter during per- and polyfluorinated substance (PFAS) adsorption, degradation, and plant uptake: a review. J Hazard Mater. 436:129139. doi: 10.1016/j.jhazmat.2022.129139.
  • Qu B, Zhao H, Zhou J. 2010. Toxic effects of perfluorooctane sulfonate (PFOS) on wheat (Triticum aestivum L.) plant. Chemosphere. 79(5):555–560. doi: 10.1016/j.chemosphere.2010.02.012.
  • Sandermann H. 1994. Higher plant metabolism of xenobiotics: the “green liver” concept. Pharmacogenetics. 4(5):225–241. doi: 10.1097/00008571-199410000-00001.
  • Sinclair GM, Long SM, Jones OAH. 2020. What are the effects of PFAS exposure at environmentally relevant concentrations? Chemosphere. 258:127340. doi: 10.1016/j.chemosphere.2020.127340.
  • Tang T, Liu X, Wang L, Zuh AA, Qiao W, Huang J. 2020. Uptake, translocation and toxicity of chlorinated polyfluoroalkyl ether potassium sulfonate (F53B) and chromium co-contamination in water spinach (Ipomoea aquatica Forsk). Environ Pollut. 266(Pt 1):115385. doi: 10.1016/j.envpol.2020.115385.
  • US Environmental Protection Agency. 2023. CompTox chemicals dashboard v2.2.1 - Master List of PFAS Substances. Washington (DC/USA): United States Environmental Protection Agency. [accessed 2023 May 16]. https://comptox.epa.gov/dashboard/chemical-lists/pfasmaster.
  • Van Aken BV, Correa PA, Schnoor JL. 2010. Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol. 44(8):2767–2776. doi: 10.1021/es902514d.
  • Wang W, Rhodes G, Ge J, Yu X, Li H. 2020. Uptake and accumulation of per- and polyfluoroalkyl substances in plants. Chemosphere. 261:127584. doi: 10.1016/j.chemosphere.2020.127584.
  • Wang Z, DeWitt JC, Higgins CP, Cousins IT. 2017. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ Sci Technol. 51(5):2508–2518. doi: 10.1021/acs.est.6b04806.
  • Wen B, Li L, Zhang H, Ma Y, Shan X-Q, Zhang S. 2014. Field study on the uptake and translocation of perfluoroalkyl acids (PFAAs) by wheat (Triticum aestivum L.) grown in biosolids-amended soils. Environ Pollut. 184:547–554. doi: 10.1016/j.envpol.2013.09.040.
  • Wielsøe M, Long M, Ghisari M, Bonefeld-Jørgensen EC. 2015. Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro. Chemosphere. 129:239–245. doi: 10.1016/j.chemosphere.2014.10.014.
  • Yang X, Ye C, Liu Y, Zhao F-J. 2015. Accumulation and phytotoxicity of perfluorooctanoic acid in the model plant species Arabidopsis thaliana. Environ Pollut. 206:560–566. doi: 10.1016/j.envpol.2015.07.050.
  • Zhang DQ, Wang M, He Q, Niu X, Liang Y. 2020. Distribution of perfluoroalkyl substances (PFASs) in aquatic plant-based systems: from soil adsorption and plant uptake to effects on microbial community. Environ Pollut. 257:113575. doi: 10.1016/j.envpol.2019.113575.
  • Zhang H, Wen B, Hu X, Wu Y, Luo L, Chen Z, Zhang S. 2015. Determination of fluorotelomer alcohols and their degradation products in biosolids-amended soils and plants using ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 1404:72–80. doi: 10.1016/j.chroma.2015.05.063.
  • Zhang H, Wen B, Hu X, Wu Y, Pan Y, Huang H, Liu L, Zhang S. 2016. Uptake, translocation, and metabolism of 8:2 Fluorotelomer alcohol in Soybean (Glycine max L. Merrill). Environ Sci Technol. 50(24):13309–13317. doi: 10.1021/acs.est.6b03734.
  • Zhang W, Zhang D, Zagorevski DV, Liang Y. 2019. Exposure of Juncus effusus to seven perfluoroalkyl acids: uptake, accumulation and phytotoxicity. Chemosphere. 233:300–308. doi: 10.1016/j.chemosphere.2019.05.258.
  • Zhao S, Zhou T, Zhu L, Wang B, Li Z, Yang L, Liu L. 2018. Uptake, translocation and biotransformation of N-ethyl perfluorooctanesulfonamide (N-EtFOSA) by hydroponically grown plants. Environ Pollut. 235:404–410. doi: 10.1016/j.envpol.2017.12.053.
  • Zhao S, Zhu L. 2017. Uptake and metabolism of 10:2 fluorotelomer alcohol in soil-earthworm (Eisenia fetida) and soil-wheat (Triticum aestivum L.) systems. Environ Pollut. 220(Pt A):124–131. doi: 10.1016/j.envpol.2016.09.030.
  • Zhou L, Xia M, Wang L, Mao H. 2016. Toxic effect of perfluorooctanoic acid (PFOA) on germination and seedling growth of wheat (Triticum aestivum L.). Chemosphere. 159:420–425. doi: 10.1016/j.chemosphere.2016.06.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.