199
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Exogenous acetone O-(2-naphthylsulfonyl)oxime improves the adverse effects of excess copper by copper detoxification systems in maize

ORCID Icon

References

  • Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-Ur-Rehman M, Irshad MK, Bharwana SA. 2015. The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res Int. 22(11):8148–8162. doi:10.1007/s11356-015-4496-5.
  • Aebi HE. 1983. Catalase. In: Bergmeyer HU, editor. Methods of enzymatic analysis. Weinhem: Verlag Chemie. p. 273–286.
  • Ahmed S, Iqbal M, Ahmad Z, Iqbal MA, Artyszak A, Sabagh AE, Alharby HF, Hossain A. 2023. Foliar application of silicon-based nanoparticles improve the adaptability of maize (Zea mays L.) in cadmium contaminated soils. Environ Sci Pollut Res. 30:41002–41013.
  • Ahsan N, Lee D-G, Lee S-H, Kang KY, Lee JJ, Kim PJ, Yoon H-S, Kim J-S, Lee B-H. 2007. Excess copper induced physiological and proteomic changes ingerminating rice seeds. Chemosphere. 67(6):1182–1193. doi:10.1016/j.chemosphere.2006.10.075.
  • Ainsworth EA, Gillespie KM. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat Protoc. 2(4):875–877. doi:10.1038/nprot.2007.102.
  • Arnon DI. 1949. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 24(1):1–15. doi:10.1104/pp.24.1.1.
  • Asada K. 1992. Ascorbate peroxidase-hydrogen peroxide scavenging enzyme in plants. Physiol Plantarum. 85(2):235–241. doi:10.1111/j.1399-3054.1992.tb04728.x.
  • Asif M, Imran MA. 2021. A mini-review on pharmacological importance of benzothiazole scaffold. MROC. 18(8):1086–1097. doi:10.2174/1570193X17999201127110214.
  • Barbosa RH, Tabaldi LA, Miyazaki FR, Pilecco M, Kassab SO, Bigaton D. 2013. Foliar copper uptake by maize plants: effects on growth and yield. Cienc Rural. 43(9):1561–1568. doi:10.1590/S0103-84782013000900005.
  • Bates L, Waldren R, Teare I. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207. doi:10.1007/BF00018060.
  • Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 44(1):276–287. doi:10.1016/0003-2697(71)90370-8.
  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ. 2006. ABA-induced NO generation and stomatal closure in arabidopsis are dependent on H2O2 synthesis. Plant J. 45(1):113–122. doi:10.1111/j.1365-313X.2005.02615.x.
  • Brunetto G, Rosa DJ, Ambrosini VG, Heinzen J, Ferreira PA, Ceretta CA, Soares CR, Melo GW, Soriani HH, Nicoloso FT, et al. 2019. Use of phosphorus fertilization and mycorrhization as strategies for reducing copper toxicity in young grapevines. Sci. Hortic. 248:176–183. doi:10.1016/j.scienta.2019.01.026.
  • Clausen M, Kannangara RM, Olsen CE, Blomstedt CK, Gleadow RM, Jorgensen K, Bak S, Motawie MS, Møller BL. 2015. The bifurcation of the cyanogenic glucoside and glucosinolate biosynthetic pathways. Plant J. 84(3):558–573. doi:10.1111/tpj.13023.
  • Cuypers A, Koistinen KM, Kokko H, Karenlampi S, Auriola S, Van Gronsveld J. 2005. Analysis of bean (Phaseolus vulgaris L.) proteins affected by copper stress. J Plant Physiol. 162(4):383–392. doi:10.1016/j.jplph.2004.07.018.
  • Dalton DA, Hanus FJ, Russell SA, Evans HJ. 1987. Purification, protection ve distribution of ascorbate peroxidase in legumen root nodules. Plant Physiol. 83(4):789–794. doi:10.1104/pp.83.4.789.
  • Demiralay M. 2022. Exogenous acetone O-(4-chlorophenylsulfonyl) oxime alleviates Cd stress-induced photosynthetic damage and oxidative stress by regulating the antioxidant defense mechanism in Zea mays. Physiol Mol Biol Plants. 28(11-12):2069–2083. doi:10.1007/s12298-022-01258-5.
  • Demmig-Adams B, Adams WW. 1992. Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol. 43(1):599–626. doi:10.1146/annurev.pp.43.060192.003123.
  • Dickinson BC, Chang CJ. 2011. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biolol. 7(8):504–511.
  • Dogra N, Sharma M, Sharma A, Keshavarzi A, Minakshi, Bhardwaj R, Thukral AK, Kumar V. 2020. Pollution assessment and spatial distribution of roadside agricultural soils: a case study from India. Int J Environ Health Res. 30(2):146–159. doi:10.1080/09603123.2019.1578865.
  • Emamverdian A, Ding Y, Alyemeni MN, Barker J, Liu G, Li Y, Mokhberdoran F, Ahmad P. 2022. Benzylaminopurine and abscisic acid mitigates cadmium and copper toxicity by boosting plant growth, antioxidant capacity, reducing metal accumulation and translocation in bamboo Pleioblastus pygmaeus (miq.) plants. Antioxidants. 11(12):2328. doi:10.3390/antiox11122328.
  • Fridovich L. 1986. Biological effect of superoxide radical. Arch Biochem Biophys. 247(1):1–11. doi:10.1016/0003-9861(86)90526-6.
  • Gabr MT, El-Gohary NS, El-Bendary ER, El-Kerdawy MM, Ni N, Shaaban MI. 2015. Synthesis, antimicrobial, antiquorum-sensing and cytotoxic activities of new series of benzothiazole derivatives. Chin Chem Lett. 26(12):1522–1528. doi:10.1016/j.cclet.2015.09.004.
  • Gao C, Gao K, Yang H, Ju T, Zhu J, Tang Z, Zhao L, Chen Q. 2022. Genome-wide analysis of metallothionein gene family in maize to reveal its role in development and stress resistance to heavy metal. Biol Res. 55(1):1–13. doi:10.1186/s40659-021-00368-w.
  • Güzel S, Terzi R. 2013. Exogenous hydrogen peroxide increases dry matter production, mineral content and level of osmotic solutes in young maize leaves and alleviates deleterious effects of copper stress. Bot Stud. 54(1):1–10. doi:10.1186/1999-3110-54-26.
  • Halliwell B. 1984. Toxic effects of oxigen on plant tissues. In: Halliwell B, editor. Chloroplast metabolism, the structure and function of chloroplasts in green leaf cells. Oxford: Oxford Press. p. 180–206.
  • Hamdia MA, Shaddad MAK. 2010. Salt tolerance of crop plants. J Stress Physiol Biochem. 6(3):64–90.
  • He L, Gao Z, Li L. 2009. Pretreatment of seed with H2O2 enhances drought tolerance of wheat (Triticum aestivum L.) seedlings. Afr J Biotechnol. 8:6151–6157.
  • Heath R, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125:189–198. doi:10.1016/0003-9861(68)90654-1.
  • Hossain MA, Piyatida P, Da Silva JAT, Fujita M. 2012. Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. 2012:1–37. doi:10.1155/2012/872875.
  • Hossain MS, Abdelrahman M, Tran CD, Nguyen KH, Chu HD, Watanabe Y, Hasanuzzaman M, Mohsin SM, Fujita M, Tran L-SP. 2020. Insights into acetate-mediated copper homeostasis and antioxidant defense in lentil under excessive copper stress. Environ Pollut. 258:113544. doi:10.1016/j.envpol.2019.113544.
  • Huang W-L, Wu F-L, Huang H-Y, Huang W-T, Deng C-L, Yang L-T, Huang Z-R, Chen L-S. 2020. Excess copper-induced alterations of protein profiles and related physiological parameters in citrus leaves. Plants. 9(3):291. doi:10.3390/plants9030291.
  • Huang X, Chen MH, Yang LT, Li YR, Wu JM. 2015. Effects of exogenous abscisic acid on cell membrane and endogenous hormone contents in leaves of sugarcane seedlings under cold stress. Sugar Tech. 17(1):59–64. doi:10.1007/s12355-014-0343-0.
  • Hunter R, Welkie GW. 1977. Growth of copper-treated corn roots as affected by EDTA, IAA, succinic acid-2,2-dimethyl hydrazide, vitamins and potassium. Environ Exp Bot. 17(1):19–26. doi:10.1016/0098-8472(77)90016-8.
  • Jan R, Khan MA, Asaf S, Lubna, Lee I-J, Kim KM. 2019. Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza sativa, via regulating its antioxidant machinery and endogenous hormones. Plants. 8(10):363. doi:10.3390/plants8100363.
  • Jin D, Zhang Q, Liu Y, Liang M, Li A, Wu J. 2022. Overexpression of the maize phytochelatin synthase gene (ZmPCS1) enhances cd tolerance in plants. Acta Physiol Plant. 44(11):1–10. doi:10.1007/s11738-022-03451-1.
  • Johansson L, Xydas C, Messios N, Stoltz E, Greger M. 2005. Growth and Cu accumulation by plants grown on Cu containing mine tailing in Cyprus. Appl Geochem. 20(1):101–107. doi:10.1016/j.apgeochem.2004.07.003.
  • Juang KW, Lo Y, Chen TH, Chen BC. 2019. Effects of copper on root morphology, cations accumulation, and oxidative stress of grapevine seedlings. Bull Environ Contam Toxicol. 102(6):873–879. doi:10.1007/s00128-019-02616-y.
  • Kacholi DS, Sahu M. 2018. Levels and health risk assessment of heavy metals in soil, water, and vegetables of Dar es Salaam, Tanzania. J Chem. 2018;1-9. doi:10.1155/2018/1402674.
  • Kadıoğlu A, Terzi R. 2007. A dehydration avoidance mechanism: leaf rolling. Bot Rev. 73:290–302.
  • Kaplan M. 1999. Accumulation of copper in soils and leaves of tomato plants in greenhouses in Turkey. J Plant Nutr. 22(2):237–244. doi:10.1080/01904169909365622.
  • Kavitha PG, Kuruvilla S, Mathew MK. 2015. Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiol Biochem. 97:165–174. doi:10.1016/j.plaphy.2015.10.005.
  • Kaya C, Ugurlar F, Ashraf M, Alam P, Ahmad P. 2023. Nitric oxide and hydrogen sulfide work together to improve tolerance to salinity stress in wheat plants by upraising the AsA-GSH cycle. Plant Physiol Biochem. 194:651–663. doi:10.1016/j.plaphy.2022.11.041.
  • Ke W, Xiong ZT, Chen S, Chen J. 2007. Effects of copper and mineral nutrition on growth, copper accumulation and mineral element uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field sites. Environ Exp Bot. 59(1):59–67. doi:10.1016/j.envexpbot.2005.10.007.
  • Knoch E, Motawie MS, Olsen CE, Møller BL, Lyngkjaer MF. 2016. Biosynthesis of the leucine-derived alpha-, beta- and gamma-hydroxynitrile glucosides in barley (Hordeum vulgare L.). Plant J. 88(2):247–256. doi:10.1111/tpj.13247.
  • Korkmaz A, Bursal E. 2022. An in vitro and in silico study on the synthesis and characterization of novel bis (sulfonate) derivatives as tyrosinase and pancreatic lipase inhibitors. J Mol Struct. 1259:132734. doi:10.1016/j.molstruc.2022.132734.
  • Korkmaz A, Duran S. 2021. High yielding electrophilic amination with lower order and higher order organocuprates: application of acetone O-(4-Chlorophenylsulfonyl)oxime in the construction of the C − N bond at room temperature. Synth Commun. 51(14):2077–2087. doi:10.1080/00397911.2021.1924787.
  • Korkmaz A. 2021a. Copper-catalyzed electrophilic animation of diarylcadmium reagents utilizing acetone O-(4-chlorophenylsulphonyl)oxime and acetone O-(naphthylsulphonyl)oxime as amination agent. Iğdır Univ J Inst Sci Tech. 11(3):2102–2111.
  • Korkmaz A. 2021b. Room-temperature copper-catalyzed electrophilic amination of arylcadmium iodides with ketoximes. J Iran Chem Soc. 18(11):3119–3125. doi:10.1007/s13738-021-02254-4.
  • Küpper H, Küpper F, Spiller M. 1996. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot. 47(2):259–266. doi:10.1093/jxb/47.2.259.
  • Lasri J, Soliman SM, Elsilk SE, Haukka M, El-Faham A. 2020. Synthesis, crystal structure, DFT and biological activity of E-pyrene-1-arbaldehyde oxime and E-2-naphthaldehyde oxime. J Mol Struct. 1207(2020):127848. doi:10.1016/j.molstruc.2020.127848.
  • Li X, Bao Z, Chen Y, Lan Q, Song C, Shi L, Chen W, Cao S, Yang Z, Zheng Q. 2023. Exogenous glutathione modulates redox homeostasis in okra (Abelmoschus esculentus) during storage. Postharvest Biol Technol. 195:112145. doi:10.1016/j.postharvbio.2022.112145.
  • Lichtenthaler HK. 1987. No chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148:350–382. doi:10.1016/0076-6879(87)48036-1.
  • Mano Y, Nemoto K. 2012. The pathway of auxin biosynthesis of plants. J Exp Bot. 63(8):2853–2872. doi:10.1093/jxb/ers091.
  • Mishra VR, Ghanavatkar CW, Mali SN, Chaudhari HK, Sekar N. 2019. Schiff base clubbed benzothiazole: synthesis, potent antimicrobial and MCF-7 anticancer activity, DNA cleavage and computational study. J Biomol Struct Dynam. 38(6):1772–1785.
  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7(9):405–410. doi:10.1016/s1360-1385(02)02312-9.
  • Morelli E, Scarano G. 2004. Copper-induced changes of nonprotein thiols and antioxidant enzymes in the marine microalga Phaeodactylum tricornutum. Plant Sci. 167(2):289–296. doi:10.1016/j.plantsci.2004.04.001.
  • Munzuroğlu Ö, Geçgil H. 2002. Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Bull Environ Contam Toxicol. 43:203–213.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880. doi:10.1093/oxfordjournals.pcp.a076232.
  • Pastori GM, Trippi VS. 1992. Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain. Plant Cell Physiol. 33:957–961. doi:10.1093/oxfordjournals.pcp.a078347.
  • Pastori GM, Trippi VS. 1993. Antioxidative protection in a drought-resistant maize strain during leaf senecence. Physiol Plant. 87(2):227–231. doi:10.1111/j.1399-3054.1993.tb00147.x.
  • Patykowski J, Urbanek H. 2003. Activity of enzymes related to H2O2 generation and metabolism in leaf apoplastic fraction of tomato leaves infected with Botrytis cinerea. J Phytopathol. 151(3):153–161. doi:10.1046/j.1439-0434.2003.00697.x.
  • Pätsikkä E, Kairavuo M, Sersen F, Aro E-M, Tyystjärvi E. 2002. Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol. 129(3):1359–1367. doi:10.1104/pp.004788.
  • Popli JV, Kumbhare MR, Surana AR, Bhalerao MR, Agrawal PAA. 2021. Benzothiazole analogues and their biological aspects: a review. http://nopr.niscair.res.in/handle/123456789/58612.
  • Printz B, Lutts S, Hausman JF, Sergeant K. 2016. Copper trafficking in plants and its implication on cell wall dynamics. Front Plant Sci. 7:601. doi:10.3389/fpls.2016.00601.
  • Qiao M, Xu Y, Xia G, Su Y, Lu B, Gao X, Fan H. 2022. Determination of hardness for maize kernels based on hyperspectral imaging. Food Chem. 366:130559. doi:10.1016/j.foodchem.2021.130559.
  • Rehman M, Liu L, Wang Q, Saleem MH, Bashir B, Ullah S, Peng D. 2019. Copper environmental toxicology, recent advances, and future outlook: a review. Environ Sci Pollut Res. 26(18):18003–18016. doi:10.1007/s11356-019-05073-6.
  • Reuther W. 1957. Copper and soil fertility. Soil, the yearbook of agriculture. Washington, DC: US Gov. Printing Office. p. 128–135. doi:10.1378/chest.1995145.
  • Ros Barcelo A, Munoz R, Sabater F. 1987. Lupin peroxidases: I. Isolation and characterization of cell wall-bound isoperoxidase activity. Physiol Plantarum. 71:448–454.
  • Rosegrant MW, Tokgoz S, Bhandary P. 2013. The new normal? A tighter global agricultural supply and demand relation and its implications for food security. Am J Agric Econ. 95(2):303–309. doi:10.1093/ajae/aas041.
  • Saleem MH, Kamran M, Zhou Y, Parveen A, Rehman M, Ahmar S, Malik Z, Mustafa A, Ahmad Anjum RM, Wang B, et al. 2020. Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper. J Environ Manage. 257:109994. doi:10.1016/j.jenvman.2019.109994.
  • Saleem MH, Rehman M, Kamran M, Afzal J, Noushahi HA, Liu L. 2020. Investigating the potential of different jute varieties for phytoremediation of copper-contaminated soil. Environ Sci Pollut Res Int. 27(24):30367–30377. doi:10.1007/s11356-020-09232-y.
  • Sanchez-Pardo B, Fernandez-Pascual M, Zornoza P. 2014. Copper microlocalisation and changes in leaf morphology, chloroplast ultrastructure and antioxidative response in white lupin and soybean grown in copper excess. J Plant Res. 127(1):119–129. doi:10.1007/s10265-013-0583-1.
  • Sati H, Khandelwal A, Pareek S. 2023. Effect of exogenous melatonin in fruit postharvest, crosstalk with hormones, and defense mechanism for oxidative stress management. Food Front. 4(1):233–261. doi:10.1002/fft2.180.
  • Savall ASP, Fidélis EM, Gutierrez MEZ, Martins BB, Gervini VC, Puntel RL, Roos DH, Ávila DS, Pinton S. 2020. Pre-clinical evidence of safety and protective effect of isatin and oxime derivatives against malathion-induced toxicity. Basic Clin Pharmacol Toxicol. 126(4):399–410. doi:10.1111/bcpt.13359.
  • Sgherri CLM, Quartacci MF, Navari-Izzo F. 2007. Early production ofactivated oxygen species in root apoplast of wheat following copper excess. J Plant Physiol. 164(9):1152–1160. doi:10.1016/j.jplph.2006.05.020.
  • Sharma JK, Kumar N, Singh NP, Santal AR. 2023. Phytoremediation technologies and its mechanism for removal of heavy metal from contaminated soil: an approach for a sustainable environment. Front Plant Sci. 14:78. doi:10.3389/fpls.2023.1076876.
  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Sidhu GPS, Bali AS, Handa N, Kapoor D, Yadav P, Khanna K, et al. 2020. Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul. 39(2):509–531. doi:10.1007/s00344-019-10018-x.
  • Silva JM, da Silva Júnior GB, Bonifácio A, Dutra AF, de Mello Prado R, de Alcântara Neto F, Zuffo AM, Melo RS, de Sousa Pereira TL, de Sousa RS. 2023. Exogenous salicylic acid alleviates water stress in watermelon plants. Ann Appl Biol. 182(1):121–130. doi:10.1111/aab.12802.
  • Singh A, Gupta R, Pandey R. 2017. Exogenous application of rutin and gallic acid regulate antioxidants and alleviate reactive oxygen generation in Oryza sativa L. Physiol Mol Biol Plants. 23(2):301–309. doi:10.1007/s12298-017-0430-2.
  • Smirnoff N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125(1):27–58. doi:10.1111/j.1469-8137.1993.tb03863.x.
  • Sönmez S, Kaplan M, Sonmez NK, Kaya H, Uz I. 2006. Copper application growth and yield of tomato plants high level of copper application to soil and leaves reduce the growth and yield of tomato plants. Sci Agric. 63(3):213–218. doi:10.1590/S0103-90162006000300001.
  • Sourani Z, Pourgheysari B, Beshkar P, Shirzad H, Shirzad M. 2016. Gallic acid inhibits proliferation and induces apoptosis in lymphoblastic leukemia cell line (C121). Iran J Med Sci. 41(6):525–530.
  • Surwase SM, Mane YD, Surwase MM, Khade BC. 2020. Synthesis of diverse (E)‐2‐((1H‐imidazol‐1‐yl)methyl)‐2‐ ((benzyloxy)methyl)‐2,3‐dihydro‐1H‐inden‐1‐one O‐benzyl oxime derivatives as potent antileishmanial agents. J Heterocyclic Chem. 57(2):724–730. doi:10.1002/jhet.3812.
  • Tanyolaç D, Ekmekçi Y, Ünalan Ş. 2007. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere. 67(1):89–98. doi:10.1016/j.chemosphere.2006.09.052.
  • Tapan S. 2016. Quantitative HPLC analysis of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchus Arvensis and Oenanthe Linearis of north-eastern region in India. J Appl Pharm Sci. 6:157–166.
  • Taslimi P, Işık M, Türkan F, Durgun M, Türkeş C, Gülçin İ, Beydemir Ş. 2021. Benzenesulfonamide derivatives as potent acetylcholinesterase, α-glycosidase, and glutathione S-transferase inhibitors: biological evaluation and molecular docking studies. J Biomol Struct Dyn. 39(15):5449–5460. doi:10.1080/07391102.2020.1790422.
  • Terzi R, Kalaycıoglu E, Demiralay M, Saglam A, Kadioglu A. 2015. Exogenous ascorbic acid mitigates accumulation of abscisic acid, proline and polyamine under osmotic stress in maize leaves. Acta Physiol Plant. 37(3):1–9. doi:10.1007/s11738-015-1792-0.
  • Terzi R, Saruhan GN, Güven FG, Kadioglu A. 2018. Alpha lipoic acid treatment induces the antioxidant system and ameliorates lipid peroxidation in maize seedlings under osmotic stress. Arch Biol Sci (Beogr). 70(3):503–511. doi:10.2298/ABS171218011T.
  • Thompson JE, Legge RL, Barber RF. 1987. The role of free radicals in senescence and wounding. New Phytol. 105(3):317–344. doi:10.1111/j.1469-8137.1987.tb00871.x.
  • Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Panda SK. 2012. Excess copper induced oxidative and response of antioxidants in rice. Plant Physiol Biochem. 53:33–39. doi:10.1016/j.plaphy.2012.01.006.
  • Tie SG, Tang ZJ, Zhao YM, Li W. 2012. Oxidative damage and antioxidant response caused by excess copper in leaves of maize. Afr J Biotechnol. 11(19):4378–4384.
  • Türkan I, Demiral T. 2009. Recent developments in understanding salinity tolerance. Environ Exp Bot. 67(1):2–9. doi:10.1016/j.envexpbot.2009.05.008.
  • Urbanek H, Kuzniak-Gebarowska E, Herka K. 1991. Elicitation of defence responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiol Plant. 13:43–50.
  • Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants, protective role of exogenous polyamines. Plant Sci. 151(1):59–66. doi:10.1016/S0168-9452(99)00197-1.
  • Venugopala KN, Chandrashekharappa S, Pillay M, Bhandary S, Kandeel M, Mahomoodally FM, Morsy MA, Chopra D, Aldhubiab BE, Attimarad M, et al. 2019. Synthesis and structural elucidation of novel benzothiazole derivatives as anti-tubercular agents: in-silico screening for possible target identification. Med Chem. 15(3):311–326. doi:10.2174/1573406414666180703121815.
  • Virtanen AI, Laine T. 1939. Investigations on the root nodüle bacteria of leguminous plants: the excreation products of root modules. The mechanism of N-fixation. Biochem J. 33(4):412–427. doi:10.1042/bj0330412.
  • Warczyk A, Wanic T, Antonkiewicz J, Pietrzykowski M. 2020. Concentration of trace elements in forest soil affected by former timber depot. Environ Monit Assess. 192(10):1–10. doi:10.1007/s10661-020-08479-9.
  • Xiong ZT, Liu C, Geng B. 2006. Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotoxicol Environ Saf. 64(3):273–280. doi:10.1016/j.ecoenv.2006.02.003.
  • Yan X, An J, Yin Y, Gao C, Wang B, Wei S. 2022. Heavy metals uptake and translocation of typical wetland plants and their ecological effects on the coastal soil of a contaminated bay in Northeast China. Sci Total Environ. 803:149871. doi:10.1016/j.scitotenv.2021.149871.
  • Yap CK, Tan WS, Wong KW, Ong GH, Cheng WH, Nulit R, Ibrahim MH, Chew W, Edward FB, Okamura H, et al. 2021. Antioxidant enzyme activities as biomarkers of Cu and Pb stress in Centella asiatica. Stresses. 1(4):253–265. doi:10.3390/stresses1040018.
  • Yetişsin F, Ahneak E. 2022. Effects of acetone O-(2-naphtylsulphonyl) oxime pre-application on maize seedlings under cadmium stress. doi:10.21203/rs.3.rs-2155204/v1.
  • Yetişsin F, Kardeş İ. 2022. Could acetone O-(4-chlorophenylsulfonyl) oxime be a copper chelating and antioxidative molecule on maize seedlings? Int J Phytoremediation. 24(7):721–729. doi:10.1080/15226514.2021.1970101.
  • Yetişsin F, Kurt F. 2020. Gallic acid (GA) alleviating copper (Cu) toxicity in maize (Zea mays L.) seedlings. Int J Phytoremediation. 22(4):420–426. doi:10.1080/15226514.2019.1667953.
  • Yruela I. 2005. Copper in Plants. Braz J Plant Physiol. 17(1):145–156. doi:10.1016/S0140-6736(01)76032-1.
  • Zahoor A, Waraich EA, Rehman MZU, Ashar MA, Usman M, Alharby H, Bamagoos H, Barutçular A, Raza C, Çiğ MA, et al. 2021. Foliar application of phosphorus enhances photosynthesis and biochemical characteristics of maize under drought stress. Phyton. 90(2):503–514. doi:10.32604/phyton.2021.013588.
  • Zehra A, Wani KI, Choudhary S, Naeem M, Khan MMA, Aftab T. 2023. Involvement of abscisic acid in silicon-mediated enhancement of copper stress tolerance in Artemisia annua. Plant Physiol Biochem. 195:37–46. doi:10.1016/j.plaphy.2022.12.026.
  • Zeng Q, Ling Q, Wu J, Yang Z, Liu R, Qi Y. 2019. Excess copper-induced changes in antioxidative enzyme activity, mineral nutrient uptake and translocation in sugarcane seedlings. Bull Environ Contam Toxicol. 103(6):834–840. doi:10.1007/s00128-019-02735-6.
  • Zhao S, Liu Q, Qi Y, Duo L. 2010. Responses of root growth and protective enzymes to copper stress in Turfgrass. Acta Biol Cracov Ser Bot. 52(2):7–11. doi:10.2478/v10182-010-0017-5.
  • Zhmurenko LA, Litvinova SA, Kutepova IS, Nerobkova LN, Mokrov GV, Rebeko AG, Voronina TA, Gudasheva TA. 2020. Synthesıs of dibenzofuranone-oxime derivatives with anticonvulsant, antihypoxic, and anti-ischemic activity. Pharm Chem J. 53(11):997–1004. doi:10.1007/s11094-020-02112-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.