108
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Does phytoextraction with Sedum plumbizincicola increase cadmium leaching from polluted agricultural soil?

, , , , , , ORCID Icon & show all

References

  • Bhat SA, Bashir O, Haq SAU, Amin T, Rafiq A, Ali M, Americo-Pinheiro JHP, Sher F. 2022. Phytoremediation of heavy metals in soil and water: an eco-friendly, sustainable and multidisciplinary approach. Chemosphere. 303(Pt 1):134788. doi:10.1016/j.chemosphere.2022.134788.
  • Bolan NS, Makino T, Kunhikrishnan A, Kim PJ, Ishikawa S, Murakami M, Naidu R, Kirkham MB. 2013. Advances in agronomy. In: Sparks DL (ed) Chapter four – cadmium contamination and its risk management in rice ecosystems. San Diego, USA: Academic Press, pp. 183–273. doi:10.1016/B978-0-12-407247-3.00004-4.
  • Chen YH, Shen ZG, Li XD. 2004. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl Geochem. 19(10):1553–1565. doi:10.1016/j.apgeochem.2004.02.003.
  • Cui LQ, Wu LH, Li N, Li SL, Li LQ, Pan GX, Luo YM. 2009. Effects of soil moisture on growth and uptake of heavy metals of Sedum plumbizincicola. Soil. 41:572–576. (In Chinese). doi:10.3321/j.issn:0253-9829.2009.04.011.
  • Deng L, Li Z, Wang J, Liu HY, Li N, Wu LH, Hu PJ, Luo YM, Christie P. 2016. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies. Int J Phytoremediation. 18(2):134–140. doi:10.1080/15226514.2015.1058328.
  • Doležal J, Altman J, Jandová V, Chytrý M, Conti L, Méndez-Castro FE, Klimešová J, Zelený D, Ottaviani G. 2022. Climate warming and extended droughts drive establishment and growth dynamics in temperate grassland plants. Agr Forest Meteorol. 313:108762. doi:10.1016/j.agrformet.2021.108762.
  • Fan TT, Long T, Lu YY, Yang L, Mi N, Xia FY, Wang XH, Deng SP, Hu QH, Zhang FW. 2022. Meta-analysis of Cd input-output fluxes in agricultural soil. Chemosphere. 303(Pt 2):134974. doi:10.1016/j.chemosphere.2022.134974.
  • Fan YQ, Li Z, Zhou T, Zhou SB, Wu LH, Luo YM, Christie P. 2019. Phytoextraction potential of soils highly polluted with cadmium using the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Int J Phytoremediation. 21(8):733–741. doi:10.1080/15226514.2018.1556592.
  • Gu Y, Jiang P, Li MD, Wu HY, Tang ZQ, Zhou JY, Li ZM, Liu QF. 2021. Effect of managed fallow on soil physicochemical properties and cadmium content in cadmium contaminated paddy fields in “Changzhutan. J Agr Resour Environ. 38:393–400. (In Chinese). doi:10.13254/j.jare.2020.0253.
  • Gul I, Manzoor M, Hashmi I, Bhatti MF, Kallerhoff J, Arshad M. 2019. Plant uptake and leaching potential upon application of amendments in soils spiked with heavy metals (Cd and Pb). J Environ Manage. 249:109408. doi:10.1016/j.jenvman.2019.109408.
  • Hamid Y, Liu L, Usman M, Tang L, Lin Q, Rashid MS, Ulhassan Z, Hussain MI, Yang XE. 2022. Organic/inorganic amendments for the remediation of a red paddy soil artificially contaminated with different cadmium levels: leaching, speciation, and phytoavailability tests. J Environ Manage. 303:114148. doi:10.1016/j.jenvman.2021.114148.
  • Houba VJG, Temminghoff EJM, Gaikhorst GA, Vark W. 2000. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun Soil Sci Plan. 31(9–10):1299–1396. doi:10.1080/00103620009370514.
  • Hu PJ, Yin YG, Ishikawa S, Suzui N, Kawachi N, Fujimaki S, Igura M, Yuan C, Huang JX, Li Z, et al. 2013. Nitrate facilitates cadmium uptake, transport and accumulation in the hyperaccumulator Sedum plumbizinicicola. Environ Sci Pollut Res Int. 20(9):6306–6316. doi:10.1007/s11356-013-1680-3.
  • Hu PJ, Zhang Y, Dong B, Gao WY, Cheng C, Luo YM, Christie P, Wu LH. 2019. Assessment of phytoextraction using Sedum plumbizincicola and rice production in Cd-polluted acid paddy soils of south China: a field study. Agric Ecosyst Environ. 286:106651. doi:10.1016/j.agee.2019.106651.
  • Huang Y, Wang LY, Wang WJ, Li TQ, He ZL, Yang XE. 2019. Current status of agricultural soil pollution by heavy metals in China: a meta-analysis. Sci Total Environ. 651(Pt 2):3034–3042. doi:10.1016/j.scitotenv.2018.10.185.
  • Kang MJ, Yu S, Jeon SW, Jung MC, Kwon YK, Lee PK, Chae G. 2021. Mobility of metal(loid)s in roof dusts and agricultural soils surrounding a Zn smelter: focused on the impacts of smelter-derived fugitive dusts. Sci Total Environ. 757:143884. doi:10.1016/j.scitotenv.2020.143884.
  • Khan ZS, Rizwan M, Hafeez M, Ali S, Javed MR, Adrees M. 2019. The accumulation of cadmium in wheat (Triticum aestivum) as influenced by zinc oxide nanoparticles and soil moisture conditions. Environ Sci Pollut Res Int. 26(19):19859–19870. doi:10.1016/j.scitotenv.2020.143884.
  • Kniuipytė I, Dikšaitytė A, Praspaliauskas M, Pedišius N, Žaltauskaitė J. 2023. Oilseed rape (Brassica napus L.) potential to remediate Cd contaminated soil under different soil water content. J Environ Manage. 325(Pt A):116627. doi:10.1016/j.jenvman.2022.116627.
  • Luo J, Xing XL, Qi SH, Wu J, Gu XWS. 2019. Comparing the risk of metal leaching in phytoremediation using Noccaea caerulescens with or without electric field. Chemosphere. 216:661–668. doi:10.1016/j.chemosphere.2018.10.167.
  • McDowell RW. 2022. Assessing the leaching of cadmium in an irrigated and grazed pasture soil. Environ Pollut. 292(Pt B):118430. doi:10.1016/j.envpol.2021.118430.
  • Ministry of Environmental Protection of the People’s Republic of China, MLR Ministry of Land and Resources of China. 2014. National Soil Pollution Investigation Bulletin. (In Chinese). https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.
  • Mu TT, Wu TZ, Zhou T, Li Z, Ouyang YN, Jiang JP, Zhu D, Hou JY, Wang ZY, Luo YM, et al. 2019. Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China. Sci Total Environ. 677:373–381. doi:10.1016/j.scitotenv.2019.04.337.
  • Ouyang W, Huang WJ, Hao X, Tysklind M, Haglund P, Hao FH. 2017. Watershed soil Cd loss after long-term agricultural practice and biochar amendment under four rainfall levels. Water Res. 122:692–700. doi:10.1016/j.watres.2017.06.084.
  • Qin GW, Niu ZD, Yu JD, Li ZH, Ma JY, Xiang P. 2021. Soil heavy metal pollution and food safety in China: effects, sources and removing technology. Chemosphere. 267:129205. doi:10.1016/j.chemosphere.2020.129205.
  • Sun X, Li Z, Wu LH, Christie P, Luo YM, Fornara DA. 2019. Root-induced soil acidification and cadmium mobilization in the rhizosphere of Sedum plumbizincicola: evidence from a high-resolution imaging study. Plant Soil. 436(1-2):267–282. doi:10.1007/s11104-018-03930-w.
  • Tang B, Xu HP, Song FM, Ge HG, Yue SY. 2022. Effects of heavy metals on microorganisms and enzymes in soils of lead-zinc tailing ponds. Environ Res. 207:112174. doi:10.1016/j.envres.2021.112174.
  • Tang X, Li Q, Wu M, Lin L, Scholz M. 2016. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China. J Environ Manage. 181:646–662. doi:10.1016/j.jenvman.2016.08.043.
  • Vázquez S, Hevia A, Moreno E, Esteban E, Peñalosa JM, Carpena RO. 2011. Natural attenuation of residual heavy metal contamination in soils affected by the Aznalcóllar mine spill, SW Spain. J Environ Manage. 92(8):2069–2075. doi:10.1016/j.jenvman.2011.03.030.
  • Wu GM, Hu PJ, Zhou JW, Dong B, Wu LH, Luo YM, Christie P. 2019. Sulfur application combined with water management enhances phytoextraction rate and decreases rice cadmium uptake in a Sedum plumbizincicola – Oryza sativa rotation. Plant Soil. 440(1-2):539–549. doi:10.1007/s11104-019-04095-w.
  • Wu LH, Zhou JW, Zhou T, Li Z, Jiang JP, Zhu D, Hou JY, Wang ZY, Luo YM, Christie P. 2018. Estimation cadmium availability to the hyperaccumulator Sedum plumbizincicola in a wide range of soil types using a piecewise function. Sci Total Environ. 637-638:1342–1350. doi:10.1016/j.scitotenv.2018.04.386.
  • Xiao ZN, Zhou XH, Yang P, Liu H. 2016. Variation and future trends in precipitation over summer and autumn across the Yunnan region. Front Earth Sci. 10(3):498–512. doi:10.1007/s11707-015-0523-6.
  • Ye YY, Li YP, Cao ZL, Liu SY, Zhao Y. 2022. Experimental and numerical study on Cu and Cd migration in different functional-area soils under simulated rainfall conditions. Environ Res. 208:112239. doi:10.1016/j.envres.2021.112239.
  • Zhao QG, Sheng RF, Teng Y, Li XH. 2017. Pilot progress, problems and countermeasures on farmland rotation and fallow system in the heavy metal polluted region of China. Ecol Environ Sci. 26:2003–2007. (In Chinese). doi:10.16258/j.cnki.1674-5906.2017.12.001.
  • Zhou T, Li LQ, Zhang XH, Zheng JF, Zheng JW, Joseph S, Pan GX. 2016. Changes in organic carbon and nitrogen in soil with metal pollution by Cd, Cu, Pb and Zn: a meta-analysis. Eur J Soil Sci. 67(2):237–246. doi:10.1111/ejss.12327.
  • Zhou T, Wang ZY, Christie P, Wu LH. 2021. Cadmium and lead pollution characteristics of soils, vegetables and human hair around an open-cast lead-zinc mine. Bull Environ Contam Toxicol. 107(6):1176–1183. doi:10.1007/s00128-021-03134-6.
  • Zhou T, Zhu D, Wu LH, Xing WQ, Luo YM, Christie P. 2018. Repeated phytoextraction of metal contaminated calcareous soil by hyperaccumulator Sedum plumbizincicola. Int J Phytoremediation. 20(12):1243–1249. doi:10.1080/15226514.2016.1156641.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.