317
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The evaluation of bacterial-augmented floating treatment wetlands for concomitant removal of phenol and chromium from contaminated water

, , , , ORCID Icon, , , & ORCID Icon show all

References

  • Afzal M, Shabir G, Iqbal S, Mustafa T, Khan QM, Khalid ZM. 2014. Assessment of heavy metal contamination in soil and groundwater at leather industrial area of Kasur, Pakistan. Clean Soil Air Water. 42(8):1133–1139. doi:10.1002/clen.201100715.
  • Ali A, Hussain MM, Niazi NK, Younas F, Farooqi ZUR, Zeeshan N, Javed MT, Shahid M, Bibi I. 2023. A comparison of technologies for remediation of arsenic-bearing water: the significance of constructed wetlands. In: Niazi NK, Bibi I, Aftab T, editors. Global arsenic hazard: ecotoxicology and remeiation. Cham: Springer International Publishing. p. 223–245.
  • Ancona V, Rascio I, Aimola G, Caracciolo AB, Grenni P, Uricchio VF, Borello D. 2022. Plant-assisted bioremediation: soil recovery and energy from biomass. In: Pandey V, editor. Assisted phytoremediation. India: Elsevier. p. 25–48.
  • Batra V, Kaur I, Pathania D, Chaudhary V. 2022. Efficient dye degradation strategies using green synthesized ZnO-based nanoplatforms: a review. Appl Surf Sci. 11:100314. doi:10.1016/j.apsadv.2022.100314.
  • Bhattacharya A, Gupta A, Kaur A, Malik D. 2014. Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. Appl Microbiol Biotechnol. 98(23):9829–9841. doi:10.1007/s00253-014-5910-5.
  • Bhattacharya A, Gupta A, Kaur A, Malik D. 2015. Simultaneous bioremediation of phenol and Cr (VI) from tannery wastewater using bacterial consortium. Int J Appl Sci Biotechnol. 3(1):50–55. doi:10.3126/ijasbt.v3i1.11889.
  • Chandrasekaran S, Pugazhendi A, Banu RJ, Ismail IM, Qari HA. 2018. Biodegradation of phenol by a moderately halophilic bacterial consortium. Environ Prog Sustainable Energy. 37(5):1587–1593. doi:10.1002/ep.12834.
  • Chojnacka K, Witek-Krowiak A, Moustakas K, Skrzypczak D, Mikula K, Loizidou MJR, Reviews SE. 2020. A transition from conventional irrigation to fertigation with reclaimed wastewater: prospects and challenges. Renewable Sustainable Energy Rev. 130:109959. doi:10.1016/j.rser.2020.109959.
  • Danish S, Kiran S, Fahad S, Ahmad N, Ali MA, Tahir FA, Rasheed MK, Shahzad K, Li X, Wang D, et al. 2019. Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicol Environ Saf. 185:109706. doi:10.1016/j.ecoenv.2019.109706.
  • Darma UZ, Mansir AZ, Riko Y, Sciences A. 2020. Compatibility and formulation of diesel degrading consortia using bacteria isolated from contaminated soil. Bayero J Pure App Sci. 12(1):199–208. doi:10.4314/bajopas.v12i1.32S.
  • Del Carmen OM, Glick BR, Santoyo GJ. 2020. ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res. 235:126439. doi:10.1016/j.micres.2020.126439.
  • EPA. 2023. U.S. environmental protection agency. https://www.epa.gov/.
  • Fatima K, Imran A, Amin I, Khan QM, Afzal M. 2018. Successful phytoremediation of crude-oil contaminated soil at an oil exploration and production company by plants-bacterial synergism. Int J Phytoremediation. 20(7):675–681. doi:10.1080/15226514.2017.1413331.
  • Gao M, Diao MH, Yuan S, Wang YK, Xu H, Wang XH. 2017. Effects of phenol on physicochemical properties and treatment performances of partial nitrifying granules in sequencing batch reactors. Biotechnol Rep (Amst). 13:13–18. doi:10.1016/j.btre.2016.12.002.
  • Garg S, Chowdhury ZZ, Faisal ANM, Rumjit NP, Thomas P. 2022. Impact of industrial wastewater on environment and human health. In: Roy S, Garg A, Garg S, Anh Tran T, editors. Advanced industrial wastewater treatment and reclamation of water. New York: Springer. p. 197–209.
  • Gayathiri E, Prakash P, Selvam K, Awasthi MK, Gobinath R, Karri RR, Ragunathan MG, Jayanthi J, Mani V, Poudineh MA, et al. 2022. Plant microbe based remediation approaches in dye removal: a review. Bioeng. 13(3):7798–7828. doi:10.1080/21655979.2022.2049100.
  • Guo S, Xiao C, Zhou N, Chi R. 2021. Speciation, toxicity, microbial remediation and phytoremediation of soil chromium contamination. Environ Chem Lett. 19(2):1413–1431. doi:10.1007/s10311-020-01114-6.
  • Hossini H, Shafie B, Niri AD, Nazari M, Esfahlan AJ, Ahmadpour M, Nazmara Z, Ahmadimanesh M, Makhdoumi P, Mirzaei N, et al. 2022. A comprehensive review on human health effects of chromium: insights on induced toxicity. Environ Sci Pollut Res Int. 29(47):70686–70705. doi:10.1007/s11356-022-22705-6.
  • Hwang JI, Li Z, Andreacchio N, Ordonez Hinz F, Wilson P. 2020. Potential use of floating treatment wetlands established with Canna flaccida for removing organic contaminants from surface water. Int J Phytoremed. 22(12):1304–1312. doi:10.1080/15226514.2020.1768511.
  • Kapoor RT, Mfarrej MF, Alam P, Rinklebe J, Ahmad P. 2022. Accumulation of chromium in plants and its repercussion in animals and humans. Environ Pollut. 301:119044. doi:10.1016/j.envpol.2022.119044.
  • Kumar L, Chugh M, Kumar S, Kumar K, Sharma J, Bharadvaja N. 2022. Remediation of petrorefinery wastewater contaminants: a review on physicochemical and bioremediation strategies. Process Saf Environ Prot. 159:362–375. doi:10.1016/j.psep.2022.01.009.
  • Kumar A, Goyal K. 2020. Water reuse in India: current perspective and future potential. Advances in chemical pollution, environmental management and protection. Italy: Elsevier. p. 33–63.
  • Lace A, Ryan D, Bowkett M, Cleary J. 2019. Chromium monitoring in water by colorimetry using optimised 1, 5-diphenylcarbazide method. Int J Environ Res Public Health. 16(10):1803. doi:10.3390/ijerph16101803.
  • López-Luna J, González-Chávez M, Esparza-Garcia F, Rodríguez-Vázquez R. 2009. Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. J Hazard Mater. 163(2–3):829–834. doi:10.1016/j.jhazmat.2008.07.034.
  • Magwaza ST, Magwaza LS, Odindo AO, Mditshwa A. 2020. Hydroponic technology as decentralised system for domestic wastewater treatment and vegetable production in urban agriculture: a review. Sci Total Environ. 698:134154. doi:10.1016/j.scitotenv.2019.134154.
  • Murphy RM, Stanczyk JC, Huang F, Loewen ME, Yang TC, Loewen M. 2023. Reduction of phenolics in faba bean meal using recombinantly produced and purified Bacillus ligniniphilus catechol 2, 3-dioxygenase. Bioresour Bioprocess. 10(1):13. doi:10.1186/s40643-023-00633-8.
  • Nowicka B. 2022. Heavy metal-induced stress in eukaryotic algae-mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environ Sci Pollut Res Int. 29(12):16860–16911. doi:10.1007/s11356-021-18419-w.
  • Oliveira GA, Colares GS, Lutterbeck CA, Dell’Osbel N, Machado EL, Rodrigues LR. 2021. Floating treatment wetlands in domestic wastewater treatment as a decentralized sanitation alternative. Sci Total Environ. 773:145609. doi:10.1016/j.scitotenv.2021.145609.
  • Panneerselvam P, Choppala G, Kunhikrishnan A, Bolan N. 2013. Potential of novel bacterial consortium for the remediation of chromium contamination. Water Air Soil Pollut. 224(12):1–11. doi:10.1007/s11270-013-1716-9.
  • Phoungthong K, Zhang H, Shao LM, He PJ. 2016. Variation of the phytotoxicity of municipal solid waste incinerator bottom ash on wheat (Triticum aestivum L.) seed germination with leaching conditions. Chemosphere. 146:547–554. doi:10.1016/j.chemosphere.2015.12.063.
  • Poi G, Aburto Medina A, Mok PC, Ball AS, Shahsavari E. 2017. Bioremediation of phenol-contaminated industrial wastewater using a bacterial consortium from laboratory to field. Water Air Soil Pollut. 228(3):1–12. doi:10.1007/s11270-017-3273-0.
  • Priyadarshanee M, Das S. 2021. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: a comprehensive review. J Environ Chem Eng. 9(1):104686. doi:10.1016/j.jece.2020.104686.
  • Raklami A, Meddich A, Oufdou K, Baslam M. 2022. Plants-microorganisms based bioremediation for heavy metal cleanup: recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. Int J Mol Sci. 23:5031. doi:10.3390/ijms23095031.
  • Rehman K, Ijaz A, Arslan M, Afzal M. 2019. Floating treatment wetlands as biological buoyant filters for wastewater reclamation. Int J Phytoremediation. 21(13):1273–1289. doi:10.1080/15226514.2019.1633253.
  • Saleem H, Arslan M, Rehman K, Tahseen R, Afzal M. 2019. Phragmites australis-a helophytic grass can establish successful partnership with phenol-degrading bacteria in a floating treatment wetland. Saudi J Biol Sci. 26(6):1179–1186. doi:10.1016/j.sjbs.2018.01.014.
  • Shah SWA, Rehman MU, Hayat A, Tahseen R, Bajwa S, Islam E, Naqvi SNH, Shabir G, Iqbal S, Afzal M, et al. 2022. Enhanced degradation of ciprofloxacin in floating treatment wetlands augmented with bacterial cells immobilized on iron oxide nanoparticles. Sustainability. 14(22):14997. doi:10.3390/su142214997.
  • Shahid MJ, Ali S, Shabir G, Siddique M, Rizwan M, Seleiman MF, Afzal M. 2020. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water. Chemosphere. 243:125353. doi:10.1016/j.chemosphere.2019.125353.
  • Shahid MJ, Al-Surhanee AA, Kouadri F, Ali S, Nawaz N, Afzal M, Rizwan M, Ali B, Soliman MH. 2020. Role of microorganisms in the remediation of wastewater in floating treatment wetlands: a review. Sustainability. 12(14):5559. doi:10.3390/su12145559.
  • Sharma R, Vymazal J, Malaviya P. 2021. Application of floating treatment wetlands for stormwater runoff: a critical review of the recent developments with emphasis on heavy metals and nutrient removal. Sci Total Environ. 777:146044. doi:10.1016/j.scitotenv.2021.146044.
  • Shi S-L, Lv J-P, Liu Q, Nan F-R, Jiao X-Y, Feng J, Xie S-L. 2018. Application of Phragmites australis to remove phenol from aqueous solutions by chemical activation in batch and fixed-bed columns. Environ Sci Pollut Res Int. 25(24):23917–23928. doi:10.1007/s11356-018-2457-5.
  • Singh H, Batish D, Kaur S, Kohli RK. 2003. Phytotoxic interference of Ageratum conyzoides with wheat (Triticum aestivum). J Agron Crop Sci. 189(5):341–346. doi:10.1046/j.1439-037X.2003.00054.x.
  • Singh S, Benny CK, Chakraborty S. 2022. An overview on the application of constructed wetlands for the treatment of metallic wastewater. Biodegradation and detoxification of micropollutants in industrial wastewater. Netherlands: Elsevier. p. 103–130.
  • Singh AK, Bilal M, Iqbal HM, Meyer AS, Raj A. 2021. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: status, opportunities and challenges. Sci Total Environ. 777:145988. doi:10.1016/j.scitotenv.2021.145988.
  • Sinha RK, Valani D, Sinha S, Singh S, Herat SJ. 2009. Bioremediation of contaminated sites: a low-cost nature’s biotechnology for environmental clean up by versatile microbes, plants and earthworms. In: Faerber T, Herzog J, editors. Solid waste management and environmental remediation. Australia: Nova Science Publishers, Inc. p. 978–971.
  • Supreeth M. 2022. Enhanced remediation of pollutants by microorganisms-plant combination. Int J Environ Sci Technol (Tehran). 19(5):4587–4598. doi:10.1007/s13762-021-03354-7.
  • Tian M, Du D, Zhou W, Zeng X, Cheng G. 2017. Phenol degradation and genotypic analysis of dioxygenase genes in bacteria isolated from sediments. Braz J Microbiol. 48(2):305–313. doi:10.1016/j.bjm.2016.12.002.
  • Tripathi P, Ramkumar J, Balani K. 2021. Microscratching and fretting of electro-co-deposited Cr-based composite coatings with BN, graphene, and diamond reinforcements. J Mater Sci. 56:6148–6166. doi:10.1007/s10853-020-05656-6.
  • Ullah H, Naz I, Alhodaib A, Abdullah M, Muddassar M. 2022. Coastal groundwater quality evaluation and hydrogeochemical characterization using chemometric techniques. Water. 14(21):3583. doi:10.3390/w14213583.
  • Yaashikaa P, Kumar PS, Jeevanantham S, Saravanan R. 2022. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ Pollut. 301:119035. doi:10.1016/j.envpol.2022.119035.
  • Yasir MW, Siddique MBA, Shabbir Z, Ullah H, Riaz L, Nisa W-U, Shah AA. 2021. Biotreatment potential of co-contaminants hexavalent chromium and polychlorinated biphenyls in industrial wastewater: individual and simultaneous prospects. Sci Total Environ. 779:146345. doi:10.1016/j.scitotenv.2021.146345.
  • Younas F, Bibi I, Afzal M, Niazi NK, Aslam Z. 2022. Elucidating the potential of vertical flow-constructed wetlands vegetated with different wetland plant species for the remediation of chromium-contaminated water. Sustainability. 14(9):5230. doi:10.3390/su14095230.
  • Younas F, Bibi I, Afzal M, Al-Misned F, Niazi NK, Hussain K, Shahid M, Shakil Q, Ali F, Wang H. 2023. Unveiling distribution, hydrogeochemical behavior and environmental risk of chromium in tannery wastewater. Water 15(3):391. doi:10.3390/w15030391.
  • Younas F, Niazi NK, Bibi I, Afzal M, Hussain K, Shahid M, Aslam Z, Bashir S, Hussain MM, Bundschuh J. 2022. Constructed wetlands as a sustainable technology for wastewater treatment with emphasis on chromium-rich tannery wastewater. J Hazard Mater. 422:126926. doi:10.1016/j.jhazmat.2021.126926.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.