258
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Adsorption of methyl orange on low-cost adsorbent natural materials and modified natural materials: a review

, ORCID Icon & ORCID Icon

References

  • Abdolal A, Guo W, Ngo H, Chen S, Nguyen N, Tung K. 2014. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresour Technol. 160:57–66. doi: 10.1016/j.biortech.2013.12.037.
  • Agbovi HK, Wilson LD. 2021. Adsorption processes in biopolymer systems: fundamentals to practical applications. In: Natural polymers-based green adsorbents for water treatment. Chapter 1; Elsevier. p. 1–53. doi: 10.1016/B978-0-12-820541-9.00011-9.
  • Ahmadi M, Niari M, Kakavandi B. 2017. Development of maghemite nanoparticles supported on cross-linked chitosan (γ-Fe2O3@CS) as a recoverable mesoporous magnetic composite for affective heavy metals removal. J Mol Liq. 248:184–196. doi: 10.1016/j.molliq.2017.10.014.
  • Al-Heetimi DT, Dawood AH, Khalaf QZ, Himdan TA. 2012. Removal of methyl orange from aqueous solution by Iraqi bentonite adsorbent. Ibn Al-Haitham J Pure Appl Sci. 25(1):1–13.
  • Al-Kazragi MA, Al-Heetimi DT, Al-Khazrajy OS. 2019. Xylenol orange removal from aqueous solution by natural bauxite (BXT) and BXT-HDTMA: kinetic, thermodynamic and isotherm modeling. DWT. 145:369–377. doi: 10.5004/dwt.2019.23609.
  • Al-Kazragi MA, Al-Heetimi DT. 2021. Pretreated fishbone as low cost-adsorbent for cationic dye adsorption from aqueous solutions: equilibrium, optimization, kinetic and thermodynamic study. J Phys: conf Ser. 1879(2)(:022073. 1-16. doi: 10.1088/1742-6596/1879/2/022073.
  • Al-Ma’amar AA. 2012. Sorption study of methyl orange on the Iraqi kaolinite clay. JNUS. 15(4):98–103. doi: 10.22401/JNUS.15.4.12.
  • Annadurai G, Juang RS, Lee DJ. 2002. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J Hazard Mater. 92(3):263–274. doi: 10.1016/S0304-3894(02)00017-1.
  • Ardejani FD, Badii K, Limaee NY, Shafaei SZ, Mirhabibi AR. 2008. Adsorption of direct red 80 dyes from aqueous solution on to almond shells: effect of pH, initial concentration and shell type. J Hazard Mater. 151(2–3):730–737. doi: 10.1016/j.jhazmat.2007.06.048.
  • Atmani F, Bensmaili A, Amrane A. 2010. Methyl orange removal from aqueous solutions by natural and treated skin almonds. Desalination Water Treat. 22(1–3):174–181. [Mismatch doi: 10.5004/dwt.2010.1425.
  • Bazrafshan E, Zarei AA, Nadi H, Zazouli MA. 2014. Adsorptive removal of methyl orange and reactive red 198 dyes by Moringa pererina ash. Indian J Chem Technol. 21:105–113.
  • Bechtold T, Burtscher E, Turcanu A. 2001. Cathodic decolorisation of textile wastewater containing reactive dyes using multi-cathode electrolyser. J Chem Technol Biotechnol. 76(3):303–311. doi: 10.1002/jctb.383.
  • Belay K, Hayelom A. 2014. Removal of methyl orange from aqueous solutions using thermally treated egg shell (locally available and low cost biosorbent). Int J Sci Res Innov. 8(1):43–49. doi: 10.13140/RG.2.1.2403.1449.
  • Bellifa A, Makhlouf M, Boumila ZH. 2017. Comparative study of the adsorption of methyl orange by bentonite and activated carbon. Acta Phys Pol A. 132(3):466–468. doi: 10.12693/APhysPolA.132.466.
  • Bhatnagar A, Sillanpää M. 2010. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment – a review. Chem Eng J. 157(2–3):277–296. doi: 10.1016/j.cej.2010.01.007.
  • Bhattacharjee C, Dutta S, Saxena V. 2020. A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent. Environ Adv. 2:100007. doi: 10.1016/j.envadv.2020.100007.
  • Bharathi K, Ramesh S. 2013. Removal of dyes using agricultural waste as low-cost adsorbents: a review. Appl Water Sci. 3(4):773–790. doi: 10.1007/s13201-013-0117-y.
  • Blaisi NI, Zubair, M, Ihsanullah, Ali S, Kazeem TS, Manzar MS, Al-Kutti W, Al Harthi MA. 2018. Date palm ash-MgAl-layered double hydroxide composite: sustainable adsorbent for effective removal of methyl orange and eriochrome black-T from aqueous phase. Environ Sci Pollut Res Int. 25(34):34319–34331. doi: 10.1007/s11356-018-3367-2.
  • Boki K, Imai T, Ohno S. 1991. Adsorption of methyl orange on starches. J Food Sci. 56(1):90–92. doi: 10.1111/j.1365-2621.1991.tb07982.x.
  • Buhani, Suharso, Miftahza, N, Permatasari, Desy, Sumadi. 2021. Improved adsorption capacity of Nannochloropsis sp. through modification with cetyltrimethylammonium bromide on the removal of methyl orange in solution. Adsorp Sci Technol. 2021:1–14. doi: 10.1155/2021/1641074.
  • Chaukura N, Murimba EC, Gwenzi W. 2017. Synthesis, characterisation and methyl orange adsorption capacity of ferric oxide–biochar nano-composites derived from pulp and paper sludge. Appl Water Sci. 7(5):2175–2186. doi: 10.1007/s13201-016-0392-5.
  • Chen D, Chen J, Luan X, Ji H, Xia Z. 2011. Characterization of anion-cationic surfactants modified montmorillonite and its application for the removal of methyl orange. Chem Eng J. 171(3):1150–1158. doi: 10.1016/j.cej.2011.05.013.
  • Chen S, Zhang J, Zhang C, Yue Q, Li Y, Li C. 2010. Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination. 252(1–3):149–156. doi: 10.1016/j.desal.2009.10.010.
  • Chen ZX, Jin XY, Chen Z, Megharaj M, Naidu R. 2011. Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. J Colloid Interface Sci. 363(2):601–607. doi: 10.1016/j.jcis.2011.07.057.
  • Crini G, Lichtfouse E, Wilson LD, Morin-Crini N. 2019. Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett. 17(1):195–213. doi: 10.1007/s10311-018-0786-8.
  • Das S, Barman S, Thakur R. 2012. Removal of methyl orange and methylene blue dyes from aqueous solution using low-cost adsorbent zeolite synthesized from fly ash. J Environ Sci Eng. 54(4):472–480.
  • Deligeer W, Gao Y, Asuha S. 2011. Adsorption of methyl orange on mesoporous ɣ-Fe2O3/SiO2 nanocomposites. Appl Surf Sci. 257(8):3524–3528. doi: 10.1016/j.apsusc.2010.11.067.
  • Deniz F. 2013. Adsorption properties of low-cost biomaterial derived from Prunus amygdalus L. for dye removal from water. ScientificWorldJournal. 2013:961671–961678. doi: 10.1155/2013/961671.
  • El Maguana Y, Elhadiri N, Benchanaa M, Chikri R. 2020. Adsorption thermodynamic and kinetic studies of methyl orange onto sugar scum powder as a low-cost inorganic adsorbent. J Chem. 2020:1–10. doi: 10.1155/2020/9165874.
  • Eljiedi AA, Kamari A. 2017. Removal of methyl orange and methylene blue dyes from aqueous solution using lala clam (Orbicularia orbiculata) shell. AIP Conf Proc. 1847(1):1–9. doi: 10.1063/1.4983899.
  • Fadhil OH, Eisa MY. 2019. Removal of Methyl orange from aqueous solutions by adsorption using corn leaves as adsorbent material. jcoeng. 25(4):55–69. doi: 10.31026/j.eng.2019.04.05.
  • Fajarwati FI, Yandini NI, Anugrahwati M, Setyawati A. 2020. Adsorption study of methylene blue and methyl orange using green shell (Perna Viridis). EKSAKTA: J Sci Data Anal. 1(1):92–97. doi: 10.20885/EKSAKTA.vol1.iss1.art14.
  • Fan L, Zhou Y, Yang W, Chen G, Yang F. 2008. Electrochemical degradation of aqueous solution of Amarnath azo dye on ACF under potentiostatic model. Dyes Pigm. 76(2):440–446. doi: 10.1016/j.dyepig.2006.09.013.
  • Fernandes JV, Rodrigues AM, Menezes RR, Neves GD. 2020. Adsorption of anionic dye on the acid-functionalized bentonite. Materials. 13(16):3600. doi: 10.3390/ma13163600.
  • Fumba G, Essomba JS, Tagne GM, Nsami JN, Bélibi PD, Mbadcam JK. 2014. Equilibrium and kinetic adsorption studies of methyl orange from aqueous solutions using kaolinite, metakaolinite and activated geopolymer as low cost adsorbents. JAIR. 3(4):156–163.
  • Gupta V, Pathania D, Sharma S, Agarwal S, Singh P. 2013. Remediation and recovery of methyl orange from aqueous solution onto acrylic acid grafted Ficus carica fiber: isotherms, kinetics and thermodynamics. J Mol Liq. 177:325–334. doi: 10.1016/j.molliq.2012.10.007.
  • Gupta R, Pandit C, Pandit S, Gupta P, Lahiri D, Agarwal D, Pandey S. 2022. Potential and future prospects of biochar-based materials and their applications in removal of organic contaminants from industrial wastewater. J Mater Cycles Waste Manag. 24(3):852–876. doi: 10.1007/s10163-022-01391-z.
  • Haddadian Z, Shavandi MA, Abidin ZZ, Fakhru’L-Razi AH, Ismail MH. 2013. Removal methyl orange from aqueous solutions using dragon fruit (Hylocereus undatus) foliage. Chem Sci Trans. 2(3):900–910.
  • Hameed BH, Mahmoud DK, Ahmad AL. 2008. Sorption of basic dye from aqueous solution by Pomelo citrus grandis peel in a batch system. Colloids Surf A Physicochem Eng Asp. 316(1–3):78–84. doi: 10.1016/j.colsurfa.2007.08.033.
  • Hameed BH. 2009. Removal of cationic dye from aqueous solution using Jack fruit peel as non-conventional low-cost adsorbents. J Hazard Mater. 162(1):344–350. doi: 10.1016/j.jhazmat.2008.05.045.
  • Haqiqi ER, Hikmawati DI. 2019. Influence of chicken eggshell powder ratio with coarse rice husk on methyl orange removal from aqueous solution. CHEESA. 2(1):33–41. doi: 10.25273/cheesa.v2i1.4335.
  • Hevira L, Zilfa, Rahmayeni, Ighalo JO, Aziz H, Zein R. 2021. Terminalia catappa shell as low-cost biosorbent for the removal of methylene blue from aqueous solutions. J Ind Eng Chem. 97:188–199. doi: 10.1016/j.jiec.2021.01.028.
  • Hosseini S, Ali M, Rasool M, Cheah W, Choong T. 2011. Carbon coated monolith, a mesoporous material for the removal of methyl orange from aqueous phase: adsorption and desorption studies. J Chem Eng. 171(3):1124–1131. doi: 10.1016/j.cej.2011.05.010.
  • Ighalo J, Adeniyi A, Adelodun A. 2021. Recent advances on the adsorption of herbicides and pesticides from polluted waters: performance evaluation via physical attributes. J Ind Eng Chem. 93:117–137. doi: 10.1016/j.jiec.2020.10.011.
  • Iwuozor K, Ighalo J, Emenike E, Ogunfowora L, Igwegbe C. 2021. Adsorption of methyl orange: a review on adsorbent performance. CRGSC. 4(100179):100179. doi: 10.1016/j.crgsc.2021.100179.
  • Jafari A, Kakavandi B, Kalantary R, Gharibi H, Asadi A, Azari A, Babaei A, Takdastan A. 2016. Application of mesoporous magnetic carbon composite for reactive dyes removal: process optimization using response surface methodology. Korean J Chem Eng. 33(10):2878–2890. doi: 10.1007/s11814-016-0155-x.
  • Jalil AA, Triwahyono S, Adam SH, Rahim ND, Aziz MA, Hairom NH, Razali NA, Abidin MA, Mohamadiah MK. 2010. Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud. J Hazard Mater. 181(1–3):755–762. doi: 10.1016/j.jhazmat.2010.05.078.
  • Jeong C, Kim J, Baik J, Pandey S, Koh D. 2022. Facile approach to the fabrication of highly selective CuCl-impregnated q-Al2O3 adsorbent for enhanced CO performance. Mater. 15(18):1–14. doi: 10.3390/ma15186356.
  • Kalantry RR, Jonidi Jafari A, Esrafili A, Kakavandi B, Gholizadeh A, Azari A. 2016. Optimization and evaluation of reactive dye adsorption on magnetic composite of activated carbon and iron oxide. Desalin Water Treat. 57(14):6411–6422. doi: 10.1080/19443994.2015.1011705.
  • Kamaru AA, Sani NS, Malek NA. 2016. Raw and surfactant-modified pineapple leaf as adsorbent for removal of methylene blue and methyl orange from aqueous solution. Desalin Water Treat. 57(40):18836–18850. doi: 10.1080/19443994.2015.1095122.
  • Kan T, Jiang X, Zhou L, Yang M, Duan M, Liu P, Jiang X. 2011. Removal of methyl orange from aqueous solutions using a bentonite modified with a new Gemini surfactant. Appl Clay Sci. 54(2):184–187. doi: 10.1016/j.clay.2011.07.009.
  • Karimulla SK, Ravindhranath K. 2014. Extraction of methyl orange dye from polluted waters using bio-sorbents derived from Thespesia populnea and Pongamia pinnata plants. Der Pharma Chem. 6(4):333–344.
  • Kermani M, Izanloo H, Kalantary RR, Salehi Barzaki H, Kakavandi B. 2017. Study of the performances of low-cost adsorbents extracted from Rosa damascena in aqueous solutions decolorization. DWT. 80:357–369. [Mismatch doi: 10.5004/dwt.2017.21019.
  • Khapre M, Shekhawa A, Saravanan D, Pandey S, Jugade R. 2022. Mesoporous Fe–Al-doped cellulose for the efficient removal of reactive dyes. Mater Adv. 3(7):3278–3285. doi: 10.1039/d2ma00146.
  • Khapre M, Pandey S, Jugade RM. 2021. Glutaraldehyde-cross-linked chitosan–alginate composite for organic dyes removal from aqueous solutions. Int J Biol Macromol. 190:862–875. doi: 10.1016/j.ijbiomac.2021.09.026.
  • Kourim A, Malouki MA, Ziouche A. 2021. Thermodynamic and kinetic behaviors of copper (II) and methyl orange (MO) adsorption on unmodified and modified kaolinite clay. In: Clay and clay minerals. Chapter 3;IntechOpen. p. 45–59.
  • Krika F, Benlahbib OE. 2015. Removal of methyl orange from aqueous solution via adsorption on cork as a natural and low-coast adsorbent: equilibrium, kinetic and thermodynamic study of removal process. Desalination Water Treat. 53(13):3711–3723. doi: 10.1080/19443994.2014.995136.
  • Lafi R, Hafiane A. 2016. Removal of methyl orange (MO) from aqueous solution using cationic surfactants modified coffee waste (MCWs). J Taiwan Inst Chem Eng. 58:424–433. doi: 10.1016/j.jtice.2015.06.035.
  • Leodopoulos C, Doulia D, Gimouhopoulos K, Triantis TM. 2012. Single and simultaneous adsorption of methyl orange and humic acid onto bentonite. Appl Clay Sci. 70:84–90. doi: 10.1016/j.clay.2012.08.005.
  • Li Y, Zhang X, Yang R, Li G, Hu C. 2016. Removal of dyes from aqueous solutions using activated carbon prepared from rice husk residue. Water Sci Technol. 73(5):1122–1128. doi: 10.2166/wst.2015.450.
  • Lu Y, Jiang B, Fang L, Ling F, Gao J, Wu F, Zhang X. 2016. High performance NiFe layered double hydroxide for methyl orange dye and Cr(VI) adsorption. Chemosphere. 152:415–422. doi: 10.1016/j.chemosphere.2016.03.015.
  • Mittal A, Malviya A, Kaur D, Mittal J, Kurup L. 2007. Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. J Hazard Mater. 148(1–2):229–240. doi: 10.1016/j.jhazmat.2007.02.028.
  • Mohamed MH, Udoetok IA, Wilson LD. 2020. Animal biopolymer-plant biomass composites: synergism and improved sorption efficiency. J Compos Sci. 4(1):15. doi: 10.3390/jcs4010015.
  • Mohamed MH, Udoetok IA, Solgi M, Steiger BGK, Zhou Z, Wilson LD. 2022. Design of sustainable biomaterial composite adsorbents for point-of-use removal of lead ions from water. Front Water. 4:739492. doi: 10.3389/frwa.2022.739492.
  • Ni ZM, Xia SJ, Wang LG, Xing FF, Pan GX. 2007. Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: adsorption property and kinetic studies. J Colloid Interface Sci. 316(2):284–291. doi: 10.1016/j.jcis.2007.07.045.
  • Okoronkwo NE, Igwe JC, Uruakpa HN. 2008. Dye removal from waste water by adsorption onto boiler fly ash. Err Aquat Environ Toxicol. 2(1):44–48.
  • Okoro H, Pandey S, Ogunkunle C, Ngila C, Zvinowanda C, Jimoh I, Lawal I, Orosun M, Adeniyi A. 2022. Nanomaterial-based biosorbents: adsorbent for efficient removal of selected organic pollutants from industrial wastewater. Emerg Contam. 8:46–58. doi: 10.1016/j.emcon.2021.12.005.
  • Omidinasab M, Rahbar N, Ahmadi M, Kakavandi B, Ghanbari F, Kyzas G, Martinez S, Jaafarzadeh N. 2018. Removal of vanadium and palladium ions by adsorption onto magnetic chitosan nanoparticles. Environ Sci Pollut Res Int. 25(34):34262–34276. doi: 10.1007/s11356-018-3137-1.
  • Pandey S, Ramontja J. 2016. Guar gum-grafted poly(acrylonitrile)-templated silica xerogel: nanoengineered material for lead ion removal. J Anal Sci Technol. 7(1):1–15. doi: 10.1186/s40543-016-0103-8.
  • Pandey S, Son N, Kang M. 2022. Synergistic sorption performance of karaya gum crosslink poly (acrylamide-co-acrylonitrile) @ metal nanoparticle for organic pollutants. Int J Biol Macromol. 210:300–314. doi: 10.1016/j.ijbiomac.2022.05.019.
  • Pandey S, Son N, Kim S, Balakrishnan D, Kang M. 2022. Locust Bean gum-based hydrogels embedded magnetic iron oxide nanoparticles nanocomposite: advanced materials for environmental and energy applications. Environ Res. 214(Pt 3):114000. doi: 10.1016/j.envres.2022.114000.
  • Papić S, Koprivanac N, Božić AL, Meteš A. 2004. Removal some reactive dyes from synthetic wastewater by combined Al(III) coagulation/carbon adsorption process. Dyes Pigm. 62(3):291–298. doi: 10.1016/S0143-7208(03)00148-7.
  • Potgieter JH, Pardesi C, Pearson S. 2021. A kinetic and thermodynamic investigation into the removal of methyl orange from wastewater utilizing fly ash in different process configurations. Environ Geochem Health. 43(7):2539–2550. doi: 10.1007/s10653-020-00567-6.
  • Purbaningtias TE, Wiyantoko B, Kurniawati P, Ruwindya Y. 2015. Removal of methyl orange in aqueous solution using rice husk. Proceeding in the 1st International Seminar on Chemical Education. Yakarta, Indonesia. 30:241–246.
  • Samarghandi MR, Hadi M, Moayedi S, Barjasteh FA. 2009. Two-parameters isotherms of methyl orange sorption by pinecone derived activated carbon. Iran J Environ Health Sci Eng. 6(4):285–294.
  • Sejie FP, Nadiye-Tabbiruka MS. 2016. Removal of methyl orange (MO) from water by adsorption onto modified local clay (kaolinite). Phys Chem. 6(2):39–48. doi: 10.5923/j.pc.20160602.02.
  • Shah SS, Sharma T, Dar BA, Bamezai RK. 2021. Adsorptive removal of methyl orange dye from aqueous solution using populous leaves: insights from kinetics, thermodynamics and computational studies. JECE. 3:172–181. doi: 10.1016/j.enceco.2021.05.002.
  • Singh KP, Mohan D, Sinha S, Tondon GS, Gosh D. 2003. Color removal from wastewater using low-cost activated carbon derived from agricultural waste material. Ind Eng Chem Res. 42(9):1965–1976. doi: 10.1021/ie020800d.
  • Sohrabi MR, Ghavami M. 2008. Photo catalytic degradation of Direct Red 23 dye using UV/TiO2: effect of operational parameters. J Hazard Mater. 153(3):1235–1239. doi: 10.1016/j.jhazmat.2007.09.114.
  • Solgi M, Tabil LG, Wilson LD. 2020. Modified biopolymer adsorbents for column treatment of sulfate species in saline aquifers. Materials. 13(10):2408–2425. doi: 10.3390/ma13102408.
  • Solgi M, Steiger BGK, Wilson LD. 2023. A fixed-bed column with an agro-waste biomass composite for controlled separation of sulfate from aqueous media. Separations. 10(4):262–282. doi: 10.3390/separations10040262.
  • Steiger BGK, Wilson LD. 2020. Modular chitosan-based adsorbents for tunable uptake of sulfate from water. Int J Mol Sci. 21(19):7130–7146. doi: 10.3390/ijms21197130.
  • Steiger BGK, Udoetok IA, Faye O, Wilson LD. 2021. Counterion effects in metal hybrid biopolymer materials for sulfate adsorption: an experimental and computational study. ACS Appl Polym Mater. 3(9):4595–4606. doi: 10.1021/acsapm.1c00706.
  • Steiger BGK, Wilson LD. 2022. Ternary metal-alginate-chitosan composites for controlled uptake of methyl orange. Surfaces. 5(4):429–444. doi: 10.3390/surfaces5040031.
  • Steiger BGK, Zhou Z, Anisimov IA, Evitts RW, Wilson LD. 2023. Valorization of agro-waste biomass as composite adsorbents for sustainable wastewater treatment. Ind Crops Prod. 191:115913–115923. doi: 10.1016/j.indcrop.2022.115913.
  • Su Y, Jiao Y, Dou C, Han R. 2014. Biosorption of methyl orange from aqueous solutions using cationic surfactant-modified wheat straw in batch mode. Desalin Water Treat. 52(31–33):6145–6155. doi: 10.1080/19443994.2013.811121.
  • Subbaiah MV, Kim DS. 2016. Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: kinetics, isotherms, and thermodynamic studies. Ecotoxicol Environ Saf. 128:109–117. doi: 10.1016/j.ecoenv.2016.02.016.
  • Sultana M, Rownok M, Sabrin M, Rahaman M, Alam S. 2022. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Clean Eng Technol. 6:100382. doi: 10.1016/j.clet.2021.100382.
  • Sun B, Yuan Y, Li H, Li X, Zhang C, Guo F, Liu X, Wang K, Zhao XS. 2019. Waste-cellulose-derived porous carbon adsorbents for methyl orange removal. J Chem Eng. 371:55–63. doi: 10.1016/j.cej.2019.04.031.
  • Tang J, Yang ZF, Yi YJ. 2012. Enhanced adsorption of methyl orange by vermiculite modified by cetyltrimethylammonium bromide (CTMAB). Procedia Environ Sci. 13:2179–2187. doi: 10.1016/j.proenv.2012.01.207.
  • Tchuifon DR, Anagho SG, Njanja E, Ghogomu JN, Ndifor-Angwafor NG, Kamgaing T. 2014. Equilibrium and kinetic modelling of methyl orange adsorption from aqueous solution using rice husk and egussi peeling. Int J Chem Sci. 12(3):741–761.
  • Teng MY, Lin SH. 2006. Removal of methyl orange dye from water onto raw and acid activated montmorillonite in fixed beds. Desalination. 201(1–3):71–81. doi: 10.1016/j.desal.2006.03.521.
  • Tetteh S, Zugle R, Ofori A, Adotey JP. 2019. Kinetics and equilibrium thermodynamic studies of the adsorption of phenolphthalein and methyl orange onto muscovite clay. Front Chem. 2(1):33–37. doi: 10.22034/FCR.2020.122175.1017.
  • Udoetok IA, Faye O, Wilson LD. 2020. Adsorption of phosphate dianions by hybrid inorganic–biopolymer polyelectrolyte complexes: experimental and computational studies. ACS Appl Polym Mater. 2(2):899–910. doi: 10.1021/acsapm.9b01123.
  • Veglio F, Beolchini F. 1997. Removal of metals by biosorption: a review. Hydrometallurgy. 44(3):301–316. doi: 10.1016/S0304-386X(96)00059-X.
  • Vijayaraghavan K, Balasubramanian R. 2015. Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J Environ Manage. 160:283–296. doi: 10.1016/j.jenvman.2015.06.030.
  • Wang S, Boyjoo Y, Choueib A, Zhu ZH. 2005. Removal of dyes from aqueous solution using fly ash and red mud. Water Res. 39(1):129–138. doi: 10.1016/j.watres.2004.09.011.
  • Yadav S, Yadav A, Bagotia N, Sharma AK, Kumar S. 2021. Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater - a review. J Water Process Eng. 42(102148):102148. doi: 10.1016/j.jwpe.2021.102148.
  • Yönten V, Sanyürek NK, Kivanç MR. 2020. A thermodynamic and kinetic approach to adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Vitis vinifera L. Surf Interfaces. 20(100529):100529. doi: 10.1016/j.surfin.2020.100529.
  • Yu J, Zhang X, Wang D, Li P. 2018. Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure. Water Sci Technol. 77(5–6):1303–1312. doi: 10.2166/wst.2018.003.
  • Yusmaniar Y, Erdawati E, Ghifari YF, Ubit DP. 2020. Synthesis of mesopore silica composite from rice husk with activated carbon from coconut shell as absorbent methyl orange color adsorbent. IOP Conf Ser: mater Sci Eng. 830(3)(:032078. doi: 10.1088/1757-899X/830/3/032078.
  • Zayed AM, Abdel Wahed MS, Mohamed EA, Sillanpää M. 2018. Insights on the role of organic matters of some Egyptian clays in methyl orange adsorption: isotherm and kinetic studies. Appl Clay Sci. 166:49–60. doi: 10.1016/j.clay.2018.09.013.
  • Zhou Y, Lu J, Zhou Y, Liu Y. 2019. Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut. 252(Pt A):352–365. doi: 10.1016/j.envpol.2019.05.072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.