138
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pristine wild sugarcane (Saccharum spontaneum) as a biosorbent for removal of methylene blue from wastewater: isotherm, kinetics and regeneration studies

, , , , & ORCID Icon

References

  • Abbasi N, Khan SA, Khan TA. 2021. Response surface methodology mediated process optimization of Celestine blue B uptake by novel custard apple seeds activated carbon/FeMoO4 nanocomposite. J Water Process Eng. 43:102267. doi: 10.1016/j.jwpe.2021.102267.
  • Aboua KN, Yobouet YA, Yao KB, Gone DL, Trokourey A. 2015. Investigation of dye adsorption onto activated carbon from the shells of Macore fruit. J Environ Manage. 156:10–14. doi: 10.1016/j.jenvman.2015.03.006.
  • Bashir O, Khan MV, Khan TA, Khan Z, Al-Thabaiti SA. 2017. Influence of stabilizing agents on the microstructure of Co-nanoparticles for removal of Congo red. Environ Technol Innov. 8:327–342. doi: 10.1016/j.eti.2017.07.005.
  • Bayomie OS, Kandeel H, Shoeib T, Yang H, Youssef N, El-Sayed MMH. 2020. A novel approach for effective removal of methylene blue dye from water using fava bean peel waste. Sci Rep. 10(1):7824. doi: 10.1038/s41598-020-64727-5.
  • Bhattacharjee C, Dutta S, Saxena VK. 2020. A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent. Environmental Advances. 2:100007.doi: 10.1016/j.envadv.2020.100007.
  • Bhattacharyya K, Sharma A. 2005. Kinetics and thermodynamics of Methylene Blue adsorption on Neem (Azadirachta indica) leaf powder. Dye Pigment. 65(1):51–59. doi: 10.1016/j.dyepig.2004.06.016.
  • Bounaas M, Bouguettoucha A, Chebli D, Gatica JM, Vidal H. 2021. Role of the wild carob as biosorbent and as precursor of a new high-surface-area activated carbon for the adsorption of methylene blue. Arab J Sci Eng. 46(1):325–341. doi: 10.1007/s13369-020-04739-5.
  • Bounaas M, Bouguettoucha A, Chebli D, Reffas A, Gatica JM, Amrane A. 2019. Batch adsorption of synthetic dye by Maclura Pomifera, a new eco-friendly waste biomass: experimental studies and modeling. International Journal of Chemical Reactor Engineering. 17(4):20180063. doi: 10.1515/ijcre-2018-0063.
  • Bounaas M, Bouguettoucha A, Chebli D, Reffas A, Harizi I, Rouabah F, Amrane A. 2019. High efficiency of methylene blue removal using a novel low-cost acid treated forest wastes, Cupressus semperirens cones: experimental results and modeling. Part Sci Technol. 37(4):504–513. doi: 10.1080/02726351.2017.1401569.
  • Choudhry A, Sharma A, Khan TA, Chaudhry SA. 2021. Flax seeds based magnetic hybrid nanocomposite: an advance and sustainable material for water cleansing. J Water Process Eng. 42(42):102150. doi: 10.1016/j.jwpe.2021.102150.
  • Das S, Samal PP, Qaiyum MA, Dutta S, Dey B, Dey S. 2023. Neolamarckia cadamba (cadamba) waste pulp as a natural and techno-economic scavenger for methylene blue from aqueous solutions. Int J Phytoremediation. 1–11. doi: 10.1080/15226514.2023.2232861.
  • Dada AO, Adekola FA, Odebunmi EO, Dada FE, Bello OM, Akinyemi BA, Bello OS, Umukoro OG. 2020. Sustainable and low-cost Ocimum gratissimum for biosorption of indigo carmine dye: kinetics, isotherm, and thermodynamic studies. Int J Phytoremediation. 22(14):1524–1537. doi: 10.1080/15226514.2020.1785389.
  • Dahiru M, Zango ZU, Haruna MA. 2018. Cationic dyes removal using low-cost banana peel biosorbent. Am J Mater Sci. 8(2):32–38. doi: 10.5923/j.materials.20180802.02.
  • Djama C, Chebli D, Bouguettoucha A, Doudou I, Amrane A. 2023. Statistical physics modelling of azo dyes biosorption onto modified powder of Acorus calamus in batch reactor. Biomass Conv Bioref. 13(2):1013–1028. doi: 10.1007/s13399-020-01190-2.
  • Dey S, Bhagat P, Mohanta J, Dey B. 2022. Methylene blue removal using eucalyptus leaves: a low cost protocol towards environmental sustainability. EJCHEM. 3(1):1–11. doi: 10.24018/ejchem.2022.3.1.82.
  • Dey S, Chakraborty R, Mohanta J, Dey B. 2022. Tricosanthes cucumerina: a potential biomass for efficient removal of methylene blue from water. Bioremediat J. 0(0):1–15. doi: 10.1080/10889868.2022.2086530.
  • Dey S, Pal K, Sarkar S. 2007. Thermally induced reversible conformational changes in the host–guest adduct of meso-tetramethyltetrakis(ethyl)calix[4]pyrrole. Tetrahedron Lett. 48(31):5481–5485. doi: 10.1016/j.tetlet.2007.05.168.
  • Mohanta J, Dey S, Dey B. 2020. Sucrose-triggered, self-sustained combustive synthesis of magnetic nickel oxide nanoparticles and efficient removal of malachite green from water. ACS Omega. 5(27):16510–16520. doi: 10.1021/acsomega.0c00999.
  • Dutt MA, Hanif MA, Nadeem F, Bhatti HN. 2020. A review of advances in engineered composite materials popular for wastewater treatment. J Environ Chem Eng. 8(5):104073. doi: 10.1016/j.jece.2020.104073.
  • Dutta S, Gupta B, Srivastava SK, Gupta AK. 2021. Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Mater Adv. 2(14):4497–4531. doi: 10.1039/D1MA00354B.
  • Fakhar N, Khan SA, Khan TA, Siddiqi WA. 2022. Efficiency of iron modified Pyrus pyrifolia peels biochar as a adsorbent for methylene blue dye adatement from aquilibrium and kinetic studies. Int J Phytoremediation. 24(11):1173–1183. doi: 10.1080/15226514.2021.2021848.
  • Guediri A, Bouguettoucha A, Chebli D, Amrane A. 2020. The use of encapsulation as a proposed solution to avoid problems encountered with conventional materials in powder form: application in methylene blue removal from aqueous solutions. J Mol Liq. 316:113841. doi: 10.1016/j.molliq.2020.113841.
  • Harizi I, Chebli D, Bouguettoucha A, Rohani S, Amrane A. 2019. A new Mg–Al–Cu–Fe-LDH composite to enhance the adsorption of acid red 66 dye: characterization, kinetics and isotherm analysis. Arab J Sci Eng. 44(6):5245–5261. doi: 10.1007/s13369-018-3526-2.
  • Hou Y, Sun J, Zhang D, Qi D, Jiang J. 2016. Porphyrin-alkaline earth MOFs with the highest adsorption capacity for methylene blue. Chemistry. 22(18):6345–6352. doi: 10.1002/chem.201600162.
  • Hussain D, Siddiqui, Khan TA. 2020. NiFe2O4/polythiophene nanocomposite and its enhanced adsorptive uptake of Janus green B and Fuchin basic from aqueous solution: isotherm and kinetics studies. Environ Prog Sustain Energy. 39(3):1–11. doi: 10.1002/ep.13371.
  • Hussain D, Khan SA, Alharthi SS, Khan TA. 2022. Insight into the performance of novel kaolinitecellulose/cobalt oxide nanocomposite as green adsorbent for liquid phase abatement of heavy metal ions: modelling and mechanism. Arab J Chem. 15(7):103925. doi: 10.1016/j.arabjc.2022.103925.
  • Hussain D, Siddiqui MF, Shirazi Z, Khan TA. 2022. Evaluation of adsorptive and photocatalytic degradation properties of FeWO4/polypyrrole nanocomposite for rose Bengal and alizarin red S from liquid phase: modeling of adsorption isotherms and kinetics data. Environ Prog Sustain Energy. 41(4):e13822. doi: 10.1002/ep.13822.
  • Jalil AA, Triwahyono S, Yaakob MR, Azmi ZZA, Sapawe N, Kamarudin NHN, Setiabudi HD, Jaafar NF, Sidik SM, Adam SH, et al. 2012. Utilization of bivalve shell-treated Zea mays L. (maize) husk leaf as a low-cost biosorbent for enhanced adsorption of malachite green. Bioresour Technol. 120:218–224. doi: 10.1016/j.biortech.2012.06.066.
  • Jawad AH, Abdulhameed AS, Bahrudin NN, Hum NNMF, Surip SN, Syed-Hassan SSA, Yousif E, Sabar S. 2021. Microporous activated carbon developed from KOH activated biomass waste: surface mechanistic study of methylene blue dye adsorption. Water Sci Technol. 84(8):1858–1872. doi: 10.2166/wst.2021.355.
  • Jawad AH, Abdulhameed AS, Hanafia MAKM, ALOthman ZA, Khan MR, Surip SN. 2021. Numerical desirability function for adsorption of methylene blue dye by sulfonated pomegranate peel biochar: modeling, kinetic, isotherm, thermodynamic, and mechanism study. Korean J Chem Eng. 38(7):1499–1509. doi: 10.1007/s11814-021-0801-9.
  • Jawad AH, Bardhan M, Islam MA, Islam MA, Syed-Hassan SSA, Surip SN, ALOthman ZA, Khan MR. 2020. Insights into the modeling, characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation. Surf Interfaces. 21:100688. doi: 10.1016/j.surfin.2020.100688.
  • Jawad AH, Kadhum AM, Ngoh YS. 2018. Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: kinetics, equilibrium and thermodynamics studies. Desalin Water Treat. 109(2018):231–240. doi: 10.5004/dwt.2018.21976.
  • Jawad AH, Waheeb AS, Rashid RA, Nawawi WI, Yousif E. 2018. Equilibrium isotherms, kinetics, and thermodynamics studies of methylene blue adsorption on pomegranate (Punica granatum) peels as a natural low-cost biosorbent. Desalin Water Treat. 105:322–331. doi: 10.5004/dwt.2018.22021.
  • Khan SA, Khan TA. 2021. Clay-hydrogel nanocomposites for adsorptive amputation of environmental contaminants from aqueous phase: a review. J Environ Chem Eng. 9(4):105575. doi: 10.1016/j.jece.2021.105575.
  • Khan TA, Rahman R, Khan EA. 2016. Decolorisation of bismarck brown R and crystal violet in liquid phase using modified pea peels: non-linear isotherm and kinetics modeling. Model Earth Syst Environ. 2(3):141. doi: 10.1007/s40808-016-0195-6.
  • Khan TA, Siddiqui MF, Abbasi N, Alharthi SS. 2022. Adsorptive decolouration of anionic dye from water by goat dropping activated carbon prepared via microwave-assisted H3PO4 activation: process optimization using response surface methodology, isotherm and kinetics modelling. Biomass Conv Bioref. 12(11):5409–5425. doi: 10.1007/s13399-022-02766-w.
  • Khan TA, Nouman M, Dua D, Khan SA, Alharthi SS. 2022. Adsorptive scavenging of cationic dyes from aquatic phase by H3PO4 activated Indian jujube (Ziziphus mauritiana) seeds based activated carbon: isotherm, kinetics, and thermodynamic study. J Saudi Chem Soc. 26(2):101417. doi: 10.1016/j.jscs.2021.101417.
  • Khan MN, Bashir O, Khan TA, Al-Thabaiti SA, Khan Z. 2018. CTAB capped synthesis of bio-conjugated silver nanoparticles and their enhanced catalytic activities. J Mol Liq. 258:133–141. doi: 10.1016/j.molliq.2018.02.130.
  • Koyuncu H, Kul AR. 2020. Removal of methylene blue dye from aqueous solution by nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent. Appl Water Sci. 10(2):1–14. doi: 10.1007/s13201-020-1156-9.
  • Kumar KV, Gadipelli S, Wood B, Ramisetty KA, Stewart AA, Howard CA, Brett DJL, Rodriguez-Reinoso F. 2019. Characterization of the adsorption site energies and heterogeneous surfaces of porous materials. J Mater Chem A. 7(17):10104–10137. doi: 10.1039/C9TA00287A.
  • Kumari R, Khan MA, Mahto M, Qaiyum MA, Mohanta J, Dey B, Dey S. 2020. Dewaxed honeycomb as an economic and sustainable scavenger for malachite green from water. ACS Omega. 5(31):19548–19556. doi: 10.1021/acsomega.0c02011.
  • Lashaki MJ, Fayaz M, Wang H, Hashisho Z, Philips JH, Anderson JE, Nichols M. 2012. Effect of adsorption and regeneration temperature on irreversible adsorption of organic vapors on beaded activated carbon. Environ Sci Technol. 46(7):4083–4090. doi: 10.1021/es3000195.
  • Lawchoochaisakul S, Monvisade P, Siriphannon P. 2021. Cationic starch intercalated montmorillonite nanocomposites as natural based adsorbent for dye removal. Carbohydr Polym. 253:117230. doi: 10.1016/j.carbpol.2020.117230.
  • Li C, Wang X, Meng D, Zhou L. 2018. Facile synthesis of low-cost magnetic biosorbent from peach gum polysaccharide for selective and efficient removal of cationic dyes. Int J Biol Macromol. 107(Pt B):1871–1878. doi: 10.1016/j.ijbiomac.2017.10.058.
  • Liu Z, Khan TA, Islam MA, Tabrez U. 2022. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon. Bioresour Technol. 354:127168. doi: 10.1016/j.biortech.2022.127168.
  • Mahato R, Qaiyum MA, Samal PP, Dutta S, Dey B, Dey S. 2023. Exploring the promising potential of fallen bamboo leaves (Bambusa bambos) for efficient removal of crystal violet from wastewater. Int J Phytoremediation. 25(8):1042–1051. doi: 10.1080/15226514.2022.2125498.
  • Mahmoud ME, Nabil GM, Khalifa MA, El-Mallah NM, Hassouba HM. 2019. Effective removal of crystal violet and methylene blue dyes from water by surface functionalized zirconium silicate nanocomposite. J Environ Chem Eng. 7(2):103009. doi: 10.1016/j.jece.2019.103009.
  • Malarvizhi R, Ho YS. 2010. The influence of pH and the structure of the dye molecules on adsorption isotherm modeling using activated carbon. Desalination. 264(1–2):97–101. doi: 10.1016/j.desal.2010.07.010.
  • Malik DS, Jain CK, Yadav AK, Kothari R, Pathak VV. 2016. Removal of methylene blue dye in aqueous solution by agricultural waste. Int Res J Eng Technol. 3(7):1–17. doi: 309040775.
  • Mishra S, Cheng L, Maiti A. 2021. The utilization of agro-biomass/byproducts for effective bio-removal of dyes from dyeing wastewater: a comprehensive review. J Environ Chem Eng. 9(1):104901. doi: 10.1016/j.jece.2020.104901.
  • Misran E, Bani O, Situmeang EM, Purba AS. 2022. Banana stem based activated carbon as a low-cost adsorbent for methylene blue removal: isotherm, kinetics, and reusability. Alex Eng J. 61(3):1946–1955. doi: 10.1016/j.aej.2021.07.022.
  • Mohammed W, Errayes A. 2020. Green chemistry: principles, applications, and disadvantages. Chem Methodol. 4(4):408–423. doi: 10.33945/sami/chemm.2020.4.4.
  • Mohanta J, Dey B, Dey S. 2020. Magnetic cobalt oxide nanoparticles: sucrose-assisted self sustained combustion synthesis, characterization, and efficient removal of malachite green from water. J Chem Eng Data. 65:2819–2829. doi: 10.1021/acs.jced.0c00131.
  • Mohanta J, Kumari R, Qaiyum MA, Dey B, Dey S. 2021. Alkali assisted hydrophobic reinforcement of coconut fiber for enhanced removal of cationic dyes: equilibrium, kinetics, and thermodynamic insight. Int J Phytoremediation. 23(13):1423–1431. doi: 10.1080/15226514.2021.1901850.
  • Mondal NK, Kar S. 2018. Potentiality of banana peel for removal of Congo red dye from aqueous solution: isotherm, kinetics and thermodynamics studies. Appl Water Sci. 8(6):1–12. doi: 10.1007/s13201-018-0811-x.
  • Nayak AK, Pal A. 2017. Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: process optimization and multi-variate modeling. J Environ Manage. 200:145–159. doi: 10.1016/j.jenvman.2017.05.045.
  • Oladoye PO, Ajiboye TO, Omotola EO, Oyewola OJ. 2022. Methylene blue dye: toxicity and potential elimination technology from wastewater. Results Eng. 16:100678. doi: 10.1016/j.rineng.2022.100678.
  • Oprea A, Degler D, Barsan N, Hemeryck A, Rebholz J. 2019. Basics of semiconducting metal oxide-based gas sensors. Elsevier Inc. pp. 61–165. doi: 10.1016/B978-0-12-811224-3.00003-2.
  • Parvin S, Rahman MW, Saha I, Alam MJ, Khan MMR. 2019. Coconut tree bark as a potential low-cost adsorbent for the removal of methylene blue from wastewater. DWT. 146:385–392. doi: 10.5004/dwt.2019.23598.
  • Qaiyum MA, Mohanta J, Kumari R, Samal PP, Dey B, Dey S. 2022. Alkali treated water chestnut (Trapa natans L.) shells as a promising phytosorbent for malachite green removal from water. Int J Phytoremediation. 24(8):822–830. doi: 10.1080/15226514.2021.1977912.
  • Qaiyum MA, Sahu PR, Samal PP, Dutta S, Dey B, Dey S. 2023. Towards a win-win chemistry: extraction of C.I. orange from Kamala fruit (Mallotus philippensis), and simultaneous exercise of its peels for the removal of methylene blue from water. Int J Phytoremediation. 25(7):907–916. doi: 10.1080/15226514.2022.2119936.
  • Qaiyum MA, Samal PP, Dey B, Dey S. 2023. Elegant synthesis of phyto-magnetic Fe3O4 @Syzygium cumini and its application for decontamination of Eriochrome Black T dye from aqueous solution and wastewater. Biomass Conv Bioref. doi: 10.1007/s13399-023-04372-w.
  • Reghioua A, Barkat D, Jawad AH, Abdulhameed AS, Rangabhashiyam S, Khan MR, ALOthman ZA. 2021. Magnetic chitosan-glutaraldehyde/zinc oxide/Fe3O4 nanocomposite: optimization and adsorptive mechanism of remazol brilliant blue R dye removal. J Polym Environ. 29(12):3932–3947. doi: 10.1007/s10924-021-02160-z.
  • Sahu O, Singh N. 2018. Significance of bioadsorption process on textile industry wastewater. Amsterdam: Elsevier Ltd. p. 367–416. doi: 10.1016/B978-0-08-102491-1.00013-7.
  • Sakr F, Alahiane S, Sennaoui A, Dinne M, Bakas I, Assabbane A. 2020. Removal of cationic dye (Methylene Blue) from aqueous solution by adsorption on two type of biomaterial of South Morocco. Mater Today Proc. 22(1):93–96. doi: 10.1016/j.matpr.2019.08.101.
  • Samal PP, Kumari J, Qaiyum MA, Mohanta J, Kumari R, Dutta S, Dey B, Dey S. 2023. Thiosulfate impregnated spent tea leaves for the remarkable uptake of malachite green. Int J Phytoremediation. 25(11):1413–1422. doi: 10.1080/15226514.2022.2161465.
  • Satya A, Harimawan A, Haryani GS, Johir MAH, Vigneswaran S, Ngo HH, Setiadi T. 2020. Batch study of cadmium biosorption by carbon dioxide enriched Aphanothece sp. dried biomass. Water. 12(1):264. doi: 10.3390/w12010264.
  • Sethi GK, Qaiyum MA, Samal PP, Dutta S, Dey B, Dey S. 2023. Phyto-magnetic and techno-economic peanut-shell embedded ferrite as a scavenger for classic removal of recalcitrant crystal violet dye from wastewater. Biomass Convers Biorefin. doi: 10.1007/s13399-023-04461-w.
  • Siddiqui MF, Khan SA, Hussain D, Tabrez U, Ahamad I, Fatma T, Khan TA. 2022. A sugarcane bagasse carbon-based composite material to decolor and reduce bacterial loads in waste water from textile industry. Ind Crops Prod. 176:114301. doi: 10.1016/j.indcrop.2021.114301.
  • Singha NR, Roy C, Mahapatra M, Dutta A, Deb Roy JS, Mitra M, Chattopadhyay PK. 2019. Scalable synthesis of collagenic-waste and natural rubber-based biocomposite for removal of Hg(II) and dyes: approach for cost-friendly waste management. ACS Omega. 4(1):421–436. doi: 10.1021/acsomega.8b02799.
  • Slama H, Ben Bouket AC, Pourhassan Z, Alenezi FN, Silini A, Cherif-Silini H, Oszako T, Luptakova L, Golińska P, Belbahri L, et al. 2021. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl Sci. 11(14):6255. doi: 10.3390/app11146255.
  • Wang J. 2018. Reuse of heavy metal from industrial effluent water. IOP Conf Ser Earth Environ Sci. 199(4):042002. doi: 10.1088/1755-1315/199/4/042002.
  • Yadav M, Thakore S, Jadeja R. 2022. Removal of organic dyes using Fucus vesiculosus seaweed bioadsorbent an ecofriendly approach: equilibrium, kinetics and thermodynamic studies. Environ Chem Ecotoxicol. 4:67–77. doi: 10.1016/j.enceco.2021.12.003.
  • Zhang L, Tan J, Xing G, Dou X, Guo X. 2021. Cotton stalk-derived hydrothermal carbon for methylene blue dye removal: investigation of the raw material plant tissues. Bioresour Bioprocess. 8(1):1–10. doi: 10.1186/s40643-021-00364-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.