124
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Production of activated carbon from food wastes (chicken bones and rice waste) by microwave assisted ZnCl2 activation: an optimized process for crystal violet dye removal

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &

References

  • AbdEl-Salam AH, Ewais HA, Basaleh AS. 2017. Silver nanoparticles immobilised on the activated carbon as efficient adsorbent for removal of crystal violet dye from aqueous solutions. A kinetic study. J Mol Liq. 248:833–841. doi:10.1016/j.molliq.2017.10.109.
  • Alshareef SA, Alqadami AA, Khan MA, Alanazi HS, Siddiqui MR, Jeon BH. 2022. Simultaneous co-hydrothermal carbonization and chemical activation of food wastes to develop hydrochar for aquatic environmental remediation. Bioresour Technol. 347:126363. doi:10.1016/j.biortech.2021.126363.
  • Anisuzzaman SM, Joseph CG, Pang CK, Affandi NA, Maruja SN, Vijayan V. 2022. Current Trends in the Utilization of Photolysis and Photocatalysis Treatment Processes for the Remediation of Dye Wastewater: a Short Review. Chem Eng. 6(4):58. ‏ doi:10.3390/chemengineering6040058.
  • Appiah-Ntiamoah R, Tilahun KM, Mengesha DN, Weldesemat NT, Ruello JL, Egualle FK, Ganje P, Kim H. 2023. Carbonyl-interfaced-biochar derived from unique capillary structures via one-step carbonization with selective methyl blue adsorption capability. J Clean Product. 410:137291. ‏ doi:10.1016/j.jclepro.2023.137291.
  • Beigi N, Shayesteh H, Javanshir S, Hosseinzadeh M. 2023. Pyrolyzed magnetic NiO/carbon-derived nanocomposite from a hierarchical nickel-based metal-organic framework with ultrahigh adsorption capacity. Environ Res. 231(Pt 1):116146. doi:10.1016/j.envres.2023.116146.
  • Belachew N, Hinsene H. 2022. Preparation of zeolite 4A for adsorptive removal of methylene blue: optimization, kinetics, isotherm, and mechanism study. Silicon. 14(4):1629–1641. ‏ doi:10.1007/s12633-020-00938-9.
  • Chen S, Wen H, Zheng T, Liu X, Wang Z, Tian S, Fan H, Chen Y, Zhao H, Wang Y. 2023. Engineering sodium alginate-SiO2 composite beads for efficient removal of methylene blue from water. Int J Biol Macromol. 239:124279. doi:10.1016/j.ijbiomac.2023.124279.
  • Côrtes LN, Druzian SP, Streit AFM, Sant’anna Cadaval Junior TR, Collazzo GC, Dotto GL. 2019. Preparation of carbonaceous materials from pyrolysis of chicken bones and its application for fuchsine adsorption. Environ Sci Pollut Res Int. 26(28):28574–28583. doi:10.1007/s11356-018-3679-2.
  • Dil EA, Ghaedi M, Ghaedi A, Asfaram A, Jamshidi M, Purkait MK. 2016. Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: kinetics and equilibrium study. J Taiwan Institute Chem Eng. 59:210–220. doi:10.1016/j.jtice.2015.07.023.
  • Duan D, Chen D, Huang L, Zhang Y, Zhang Y, Wang Q, Xiao G, Zhang W, Lei H, Ruan R. 2021. Activated carbon from lignocellulosic biomass as catalyst: a review of the applications in fast pyrolysis process. J Anal Appl Pyr. 158:105246. ‏ doi:10.1016/j.jaap.2021.105246.
  • Elkhalifa S, Al-Ansari T, Mackey HR, McKay G. 2019. Food waste to biochars through pyrolysis: a review. Resources Conserv Recyc. 144:310–320. ‏ doi:10.1016/j.resconrec.2019.01.024.
  • Escamilla-García PE, Camarillo-López RH, Carrasco-Hernández R, Fernández-Rodríguez E, Legal-Hernández JM. 2020. Technical and economic analysis of energy generation from waste incineration in Mexico. Energy Strategy Rev. 31:100542. ‏ doi:10.1016/j.esr.2020.100542.
  • Foroutan R, Peighambardoust SJ, Peighambardoust SH, Pateiro M, Lorenzo JM. 2021. Adsorption of crystal violet dye using activated carbon of lemon wood and activated carbon/Fe3O4 magnetic nanocomposite from aqueous solutions: a kinetic, equilibrium and thermodynamic study. Mol. 26(8):2241. doi:10.3390/molecules26082241.
  • Freundlich HMF. 1906. Over the adsorption in solution. J Phys Chem. 57:385–471.
  • Hadi S, Taheri E, Amin MM, Fatehizadeh A, Lima EC. 2021. Fabrication of activated carbon from pomegranate husk by dual consecutive chemical activation for 4-chlorophenol adsorption. Environ Sci Pollut Res Int. 28(11):13919–13930. doi:10.1007/s11356-020-11624-z.
  • Hamzezadeh A, Rashtbari Y, Afshin S, Morovati M, Vosoughi M. 2022. Application of low-cost material for adsorption of dye from aqueous solution. Int J Environ Anal Chem. 102(1):254–269. ‏ doi:10.1080/03067319.2020.1720011.
  • Hanafi NAM, Abdulhameed AS, Jawad AH, ALOthman ZA, Yousef TA, Al Duaij OK, Alsaiari NS. 2022. Optimized removal process and tailored adsorption mechanism of crystal violet and methylene blue dyes by activated carbon derived from mixed orange peel and watermelon rind using microwave-induced ZnCl2 activation. Biomass Conv Bioref. doi:10.1007/s13399-022-03646-z.
  • Hashem AA, Mahmoud SA, Geioushy RA, Fouad OA. 2023. Adsorption of malachite green dye over synthesized calcium silicate nanopowders from waste materials. Mater Sci Eng B. 295:116605. doi:10.1016/j.mseb.2023.116605.
  • Ho YS, McKay G. 1998. Sorption of dye from aqueous solution by peat. Chem Eng J. 70(2):115–124. ‏ doi:10.1016/S0923-0467(98)00076-1.
  • Jasri K, Abdulhameed AS, Jawad AH, ALOthman ZA, Yousef TA, Al Duaij OK. 2023. Mesoporous activated carbon produced from mixed wastes of oil palm frond and palm kernel shell using microwave radiation-assisted K2CO3 activation for methylene blue dye removal: optimization by response surface methodology. Diamond Relat Mater. 131:109581. doi:10.1016/j.diamond.2022.109581.
  • Jawad AH, Rangabhashiyam S, Abdulhameed AS, Syed-Hassan SSA, ALOthman ZA, Wilson LD. 2022. Process optimization and adsorptive mechanism for reactive blue 19 dye by magnetic crosslinked chitosan/MgO/Fe3O4 biocomposite. J Polym Environ. 30(7):2759–2773. doi:10.1007/s10924-022-02382-9.
  • Khan S, Anjum R, Raza ST, Bazai NA, Ihtisham M. 2022. Technologies for municipal solid waste management: current status, challenges, and future perspectives. Chemosphere. 288(Pt 1):132403. ‏ doi:10.1016/j.chemosphere.2021.132403.
  • Kwikima MM, Chebude Y, Meshesha BT. 2022. Cadmium removal from aqueous solution by blended bamboo sawdust/rice-husk biochar; optimization of influencing parameters. Int J Phytoremedi. doi:10.1080/15226514.2022.2159318.
  • Lagergren S. 1898. Zur theorie der sogenannten adsorption geloster stoffe. Vet Akad Handl. 24:1–39. ‏
  • Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 40(9):1361–1403. doi:10.1021/ja02242a004.
  • Liu D, Ma X, Huang J, Shu Z, Chu X, Li Y, Jin Y. 2022. Investigation of the aerobic biochemical treatment of food waste: a case study in Zhejiang and Jiangsu provinces in China. Sci Total Environ. 806(Pt 1):150414. ‏ doi:10.1016/j.scitotenv.2021.150414.
  • Liu H, Ma X, Li L, Hu Z, Guo P, Jiang Y. 2014. The catalytic pyrolysis of food waste by microwave heating. Bioresour Technol. 166:45–50. ‏ doi:10.1016/j.biortech.2014.05.020.
  • Ma T, Wu Y, Liu N, Wu Y. 2020. Hydrolyzed polyacrylamide modified diatomite waste as a novel adsorbent for organic dye removal: adsorption performance and mechanism studies. Polyhedron. 175:114227. doi:10.1016/j.poly.2019.114227.
  • Ma XY, Fan TT, Wang G, Li ZH, Lin JH, Long YZ. 2022. High performance GO/MXene/PPS composite filtration membrane for dye wastewater treatment under harsh environmental conditions. Comp Communi. 29:101017. ‏ doi:10.1016/j.coco.2021.101017.
  • Mannarino G, Sarrion A, Diaz E, Gori R, De la Rubia MA, Mohedano AF. 2022. Improved energy recovery from food waste through hydrothermal carbonization and anaerobic digestion. Waste Manag. 142:9–18. ‏ doi:10.1016/j.wasman.2022.02.003.
  • Mathioudakis D, Karageorgis P, Papadopoulou K, Astrup TF, Lyberatos G. 2022. Environmental and economic assessment of alternative food waste management scenarios. Sustain. 14(15):9634. ‏ doi:10.3390/su14159634.
  • Mohan S, Joseph CP. 2021. Potential hazards due to municipal solid waste open dumping in India. J Indian Inst Sci. 101(4):523–536. ‏ doi:10.1007/s41745-021-00242-4.
  • Mohanty K, Naidu JT, Meikap BC, Biswas MN. 2006. Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Ind Eng Chem Res. 45(14):5165–5171. doi:10.1021/ie060257r.
  • Najemalden MA, Ahmed RT, Ali AA. 2018. Quality assessment of LOWER ZAAB river within kirkuk governorate using water quality index. Al-Kitab J Pure Sci. 1(2):370–384.
  • Niyitegeka H, Kassahun SK, Nyangi MJ. 2023. Removal of fluoride from water using aluminum‐modified activated carbon prepared from khat (Catha edulis) stems. Remed J. 33(2):119–133. ‏ doi:10.1002/rem.21749.
  • Obiora-Okafo IA, Onukwuli OD, Igwegbe CA, Onu CE, Omotioma M. 2022. Enhanced performance of natural polymer coagulants for dye removal from wastewater: coagulation kinetics, and mathematical modelling approach. Environ Process. 9(2):20. ‏ doi:10.1007/s40710-022-00561-3.
  • Özçelik G, Kurtulbaş Şahin E, Şahin S. 2022. Effect of ionic strength on methylene blue sorption onto macroporous resins: a comprehensive study. J Disper Sci Technol. 43(5):716–725. ‏ doi:10.1080/01932691.2020.1844742.
  • Reza MS, Yun CS, Afroze S, Radenahmad N, Bakar MSA, Saidur R, Taweekun J, Azad AK. 2020. Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab J Basic Appl Sci. 27(1):208–238. ‏ doi:10.1080/25765299.2020.1766799.
  • RuiHong W, Abdulhameed AS, Yong SK, He L, ALOthman ZA, Wilson LD, Jawad AH. 2023. Functionalization of chitosan biopolymer with SiO2 nanoparticles and benzaldehyde via hydrothermal process for acid red 88 dye adsorption: box-Behnken design optimization. Int J Biol Macromol. 247:125806. doi:10.1016/j.ijbiomac.2023.125806.
  • Samsami S, Mohamadizaniani M, Sarrafzadeh MH, Rene ER, Firoozbahr M. 2020. Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. Process Safety Environ Protect. 143:138–163. doi:10.1016/j.psep.2020.05.034.
  • Shayesteh H, Rahbar-Kelishami A, Norouzbeigi R. 2016. Adsorption of malachite green and crystal violet cationic dyes from aqueous solution using pumice stone as a low-cost adsorbent: kinetic, equilibrium, and thermodynamic studies. Desalin Water Treat. 57(27):12822–12831. doi:10.1080/19443994.2015.1054315.
  • Siddiqua A, Hahladakis JN, Al-Attiya WAK. 2022. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ Sci Pollut Res Int. 29(39):58514–58536. ‏ doi:10.1007/s11356-022-21578-z.
  • Sing KS. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem. 57(4):603–619. doi:10.1351/pac198557040603.
  • Singh D, Yadav S. 2021. Evaluation of the physico-chemical development of kitchen food wastes through torrefaction - a biodiversity case study. Biomass Conv Bioref. 11(4):1353–1362. doi:10.1007/s13399-019-00526-x.
  • Smadi Y, Alsood E, Aljaradin M. 2023. A solar disinfection water treatment system for rural areas/Jordan. Al-Kitab J Pure Sci. 5(2):55–67. doi:10.32441/kjps.05.02.p5.
  • Suhaimi A, Abdulhameed AS, Jawad AH, Yousef TA, Al Duaij OK, ALOthman ZA, Wilson LD. 2022. Production of large surface area activated carbon from a mixture of carrot juice pulp and pomegranate peel using microwave radiation-assisted ZnCl2 activation: an optimized removal process and tailored adsorption mechanism of crystal violet dye. Diamond Relat Mater. 130:109456. doi:10.1016/j.diamond.2022.109456.
  • Sultana M, Rownok MH, Sabrin M, Rahaman MH, Alam SN. 2022. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Clean Eng Tech. 6:100382. ‏ doi:10.1016/j.clet.2021.100382.
  • Tamjid Farki NNL, Abdulhameed AS, Surip SN, ALOthman ZA, Jawad AH. 2023. Tropical fruit wastes including durian seeds and rambutan peels as a precursor for producing activated carbon using H3PO4-assisted microwave method: RSM-BBD optimization and mechanism for methylene blue dye adsorption. Int J Phytoremediation. doi:10.1080/15226514.2023.2175780.
  • Tang Y, Liu M, He D, Pan R, Dong W, Feng S, Ma L. 2022. Efficient electrochemical degradation of X-GN dye wastewater using porous boron-doped diamond electrode. Chemosphere. 307(Pt 2):135912. ‏ doi:10.1016/j.chemosphere.2022.135912.
  • Temkin MI. 1940. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim. URSS. 12:327–356.
  • Yang C, Wu H, Cai M, Li Y, Guo C, Han Y, Zhang Y, Song B. 2023. Valorization of food waste digestate to ash and biochar composites for high performance adsorption of methylene blue. J Clean Product. 397:136612. doi:10.1016/j.jclepro.2023.136612.
  • Yang N, Li F, Liu Y, Dai T, Wang Q, Zhang J, Dai Z, Yu B. 2022. Environmental and economic life-cycle assessments of household food waste management systems: a comparative review of methodology and research progress. Sustain. 14(13):7533. ‏ doi:10.3390/su14137533.
  • Yusuff AS, Ajayi OA, Popoola LT. 2021. Application of Taguchi design approach to parametric optimization of adsorption of crystal violet dye by activated carbon from poultry litter. Sci Afr. 13:e00850. doi:10.1016/j.sciaf.2021.e00850.
  • Zhang L, Yang P, Zhu K, Ji X, Ma J, Mu L, Ullah F, Ouyang W, Li A. 2022. Biorefinery-oriented full utilization of food waste and sewage sludge by integrating anaerobic digestion and combustion: synergistic enhancement and energy evaluation. J Clean Product. 380:134925. doi:10.1016/j.jclepro.2022.134925.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.