173
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Response surface methodology for optimizing methylene blue dye removal by mesoporous activated carbon derived from renewable woody Bambusoideae waste

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon &

References

  • Ahamad T, Naushad M, Eldesoky GE, Al-Saeedi SI, Nafady A, Al-Kadhi NS, Al-Muhtaseb AH, Khan AA, Khan A. 2019. Effective and fast adsorptive removal of toxic cationic dye (MB) from aqueous medium using amino-functionalized magnetic multiwall carbon nanotubes. J Mol Liq. 282:154–161. doi:10.1016/j.molliq.2019.02.128.
  • Alayli A, Nadaroglu H, Turgut E. 2021. Nanobiocatalyst beds with Fenton process for removal of methylene blue. Appl Water Sci. 11:32.
  • Ani JU, Akpomie KG, Okoro UC, Aneke LE, Onukwuli OD, Ujam OT. 2020. Potentials of activated carbon produced from biomass materials for sequestration of dyes, heavy metals, and crude oil components from aqueous environment. Appl Water Sci. 10:69.
  • Beigi N, Shayesteh H, Javanshir S, Hosseinzadeh M. 2023. Pyrolyzed magnetic NiO/carbon-derived nanocomposite from a hierarchical nickel-based metal-organic framework with ultrahigh adsorption capacity. Environ Res. 231(Pt 1):116146. doi:10.1016/j.envres.2023.116146.
  • Benadjemia M, Millière L, Reinert L, Benderdouche N, Duclaux L. 2011. Preparation, characterization and methylene blue adsorption of phosphoric acid activated carbons from globe artichoke leaves. Fuel Process Technol. 92(6):1203–1212. doi:10.1016/j.fuproc.2011.01.014.
  • Bharti V, Vikrant K, Goswami M, Tiwari H, Sonwani RK, Lee J, Tsang DCW, Kim KH, Saeed M, Kumar S, et al. 2019. Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environ Res. 171:356–364. doi:10.1016/j.envres.2019.01.051.
  • Chakma S, Moholkar VS. 2016. Synthesis of bi-metallic oxides nanotubes for fast removal of dye using adsorption and sonocatalysis process. J Ind Eng Chem. 37:84–89. doi:10.1016/j.jiec.2016.03.009.
  • Dakhil IH, Ali AH. 2021. Adsorption of methylene blue dye from industrial wastewater using activated carbon prepared from agriculture wastes. DWT. 216:372–378. doi:10.5004/dwt.2021.26802.
  • Danish M, Pin Z, Ziyang L, Ahmad T, Majeed S, Ahmad S, Raza A, Hidayat N, Bukhari IH. 2020. Adsorptive removal of methylene blue dye by using low-cost activated carbon derived from agricultural waste: equilibrium, kinetic and thermodynamic studies. Groundw Sustain Dev. 11:100449.
  • Dao TM, Le Luu T. 2020. Synthesis of activated carbon from macadamia nutshells activated by H2SO4 and K2CO3 for methylene blue removal in water. Bioresour Technol Rep. 12:100583. doi:10.1016/j.biteb.2020.100583.
  • Din MI, Khalid R, Najeeb J, Hussain Z. 2021. Fundamentals and photocatalysis of methylene blue dye using various nanocatalytic assemblies-a critical review. J Clean Prod. 298:126567. doi:10.1016/j.jclepro.2021.126567.
  • El-Mekkawi DM, Ibrahim FA, Selim MM. 2016. Removal of methylene blue from water using zeolites prepared from Egyptian Kaolins collected from different sources. J Environ Chem Eng. 4(2):1417–1422. doi:10.1016/j.jece.2016.01.007.
  • El-Sayed GO, Yehia MM, Asaad AA. 2014. Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid. Water Resour Ind. 7-8:66–75. doi:10.1016/j.wri.2014.10.001.
  • Farma R, Putri A, Taer E, Awitdrus A, Apriwandi A. 2021. Synthesis of highly porous activated carbon nanofibers derived from bamboo waste materials for application in supercapacitor. J Mater Sci Mater Electron. 32(6):7681–7691. doi:10.1007/s10854-021-05486-5.
  • Ferreira-Neto EP, Ullah S, da Silva TCA, Domeneguetti RR, Perissinotto AP, de Vicente FS, Rodrigues-Filho UP, Ribeiro SJL. 2020. Bacterial nanocellulose/MoS2 hybrid aerogels as bifunctional adsorbent/photocatalyst membranes for in-flow water decontamination. ACS Appl Mater Interfaces. 12(37):41627–41643. doi:10.1021/acsami.0c14137.
  • Freundlich H. 1906. User die adsorption in Losungen (adsorption in solution). J Phys Chem. 57:384–470.
  • Gao Y, Yue Q, Gao B, Li A. 2020. Insight into activated carbon from different kinds of chemical activating agents: a review. Sci Total Environ. 746:141094. doi:10.1016/j.scitotenv.2020.141094.
  • García JR, Sedran U, Zaini MAA, Zakaria ZA. 2018. Preparation, characterization, and dye removal study of activated carbon prepared from palm kernel shell. Environ Sci Pollut Res Int. 25(6):5076–5085. doi:10.1007/s11356-017-8975-8.
  • Hameed BH, Din ATM, Ahmad AL. 2007. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater. 141(3):819–825. doi:10.1016/j.jhazmat.2006.07.049.
  • Husien S, El-Taweel RM, Salim AI, Fahim IS, Said LA, Radwan AG. 2022. Review of activated carbon adsorbent material for textile dyes removal: preparation, and modelling. Curr Res Green Sustain Chem. 5:100325. doi:10.1016/j.crgsc.2022.100325.
  • Hussain NB, Akgül ET, Yılmaz M, Parlayıcı Ş, Hadibarata T. 2023. Preparation and characterization of low-cost activated carbon from Moringa oleifera chemically activated using ZnCl2 for the adsorption of bisphenol A. Int J Phytoremediation. 25(9):1199–1214. doi:10.1080/15226514.2022.2144796.
  • Hussain S, Kamran M, Khan SA, Shaheen K, Shah Z, Suo H, Khan Q, Shah AB, Rehman WU, Al-Ghamdi YO, et al. 2021. Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. Int J Biol Macromol. 168:383–394. doi:10.1016/j.ijbiomac.2020.12.054.
  • Ismail IS, Rashidi NA, Yusup S. 2022. Production and characterization of bamboo-based activated carbon through single-step H3PO4 activation for CO2 capture. Environ Sci Pollut Res Int. 29(9):12434–12440. doi:10.1007/s11356-021-15030-x.
  • Jani NA, Haddad L, Abdulhameed AS, Jawad AH, ALOthman ZA, Yaseen ZM. 2022. Modeling and optimization of the adsorptive removal of crystal violet dye by durian (Durio zibethinus) seeds powder: insight into kinetic, isotherm, thermodynamic, and adsorption mechanism. Biomass Convers Biorefin. :1–14. doi:10.1007/s13399-022-03319-x.
  • Jasri K, Abdulhameed AS, Jawad AH, ALOthman ZA, Yousef TA, Al Duaij OK. 2023. Mesoporous activated carbon produced from mixed wastes of oil palm frond and palm kernel shell using microwave radiation-assisted K2CO3 activation for methylene blue dye removal: optimization by response surface methodology. Diamond Relat Mater. 131:109581. doi:10.1016/j.diamond.2022.109581.
  • Jawad AH, Sahu UK, Mastuli MS, ALOthman ZA, Wilson LD. 2022. Multivariable optimization with desirability function for carbon porosity and methylene blue adsorption by watermelon rind activated carbon prepared by microwave assisted H3PO4. Biomass Convers Biorefinery. 1–15.
  • Kim MI, Bai BC. 2022. Effect of nitric acid treatment on the pitch properties and preparation of activated carbon. Carbon Lett. 32(1):99–107. doi:10.1007/s42823-021-00256-z.
  • Kuntari K, Fajarwati FI. 2018. Utilization of bamboo leaves wastes for methylene blue dye adsorption. AIP Conference Proceedings. 2026, 020062.
  • Kyzas GZ, Bikiaris DN, Mitropoulos AC. 2017. Chitosan adsorbents for dye removal: a review. Polym Int. 66(12):1800–1811. doi:10.1002/pi.5467.
  • Langmuir I. 1916. The conctitution and fundamental properties of solids and liquids. J Am Chem Soc. 38(11):2221–2295. doi:10.1021/ja02268a002.
  • Li L, Wu M, Song C, Liu L, Gong W, Ding Y, Yao J. 2021. Efficient removal of cationic dyes via activated carbon with ultrahigh specific surface derived from Vinasse wastes. Bioresour Technol. 322:124540. doi:10.1016/j.biortech.2020.124540.
  • Li L, Wang J, Jia C, Lv Y, Liu Y. 2021. Co-pyrolysis of cyanobacteria and plastics to synthesize porous carbon and its application in methylene blue adsorption. J Water Process Eng. 39:101753. doi:10.1016/j.jwpe.2020.101753.
  • Liu L, Zhang T, Yu X, Mkandawire V, Ma J, Li X. 2022. Removal of Fe2+ and Mn2+ from polluted groundwater by insoluble humic acid/tourmaline composite particles. Materials. 15(9):3130. doi:10.3390/ma15093130.
  • Mahapatra U, Chatterjee A, Das C, Manna AK. 2021. Adsorptive removal of hexavalent chromium and methylene blue from simulated solution by activated carbon synthesized from natural rubber industry biosludge. Environ Technol Innov. 22:101427. doi:10.1016/j.eti.2021.101427.
  • Maia LS, da Silva AIC, Carneiro ES, Monticelli FM, Pinhati FR, Mulinari DR. 2021. Activated carbon from palm fibres used as an adsorbent for methylene blue removal. J Polym Environ. 29(4):1162–1175. doi:10.1007/s10924-020-01951-0.
  • Mbarki F, Selmi T, Kesraoui A, Seffen M. 2022. Low-cost activated carbon preparation from Corn stigmata fibers chemically activated using H3PO4, ZnCl2 and KOH: study of methylene blue adsorption, stochastic isotherm and fractal kinetic. Ind Crops Prod. 178:114546. doi:10.1016/j.indcrop.2022.114546.
  • Mohebali S, Bastani D, Shayesteh H. 2018. Methylene blue removal using modified celery (Apium graveolens) as a low-cost biosorbent in batch mode: kinetic, equilibrium, and thermodynamic studies. J Mol Struct. 1173:541–551. doi:10.1016/j.molstruc.2018.07.016.
  • Mousavi SA, Mahmoudi A, Amiri S, Darvishi P, Noori E. 2022. Methylene blue removal using grape leaves waste: optimization and modeling. Appl Water Sci. 12:112.
  • Najemalden MA, Ahmed RT, Ali AA. 2018. Quality assessment of LOWER ZAAB river within kirkuk governorate using water quality index. Al-Kitab J Pure Sci. 1(2):370–384.
  • Nayak SS, Mirgane NA, Shivankar VS, Pathade KB, Wadhawa GC. 2021. Adsorption of methylene blue dye over activated charcoal from the fruit peel of plant Hydnocarpus pentandra. Mater Today Proc. 37:2302–2305. doi:10.1016/j.matpr.2020.07.728.
  • Patel RK, Prasad R, Shankar R, Khare P, Yadav M. 2021. Adsorptive removal of methylene blue dye from soapnut shell & pineapple waste derived activated carbon. Int J Eng Sci Tech. 13(1):81–87. doi:10.4314/ijest.v13i1.12S.
  • Razali NS, Abdulhameed AS, Jawad AH, ALOthman ZA, Yousef TA, Al-Duaij OK, Alsaiari NS. 2022. High-surface-area-activated carbon derived from mango peels and seeds wastes via microwave-induced ZnCl2 activation for adsorption of methylene blue dye molecules: statistical optimization and mechanism. Molecules. 27(20):6947. doi:10.3390/molecules27206947.
  • Sahu S, Pahi S, Sahu JK, Sahu UK, Patel RK. 2020. Kendu (Diospyros melanoxylon Roxb) fruit peel activated carbon—an efficient bioadsorbent for methylene blue dye: equilibrium, kinetic, and thermodynamic study. Environ Sci Pollut Res Int. 27(18):22579–22592. doi:10.1007/s11356-020-08561-2.
  • Sahu UK, Mahapatra SS, Patel RK. 2018. Application of Box–Behnken Design in response surface methodology for adsorptive removal of arsenic from aqueous solution using CeO2/Fe2O3/graphene nanocomposite. Mater Chem Phys. 207:233–242. doi:10.1016/j.matchemphys.2017.11.042.
  • Samarghandi MR, Dargahi A, Shabanloo A, Nasab HZ, Vaziri Y, Ansari A. 2020. Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater. Arab J Chem. 13(8):6847–6864. doi:10.1016/j.arabjc.2020.06.038.
  • Sing KS. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem. 57(4):603–619. doi:10.1351/pac198557040603.
  • Smadi Y, Alsood E, Aljaradin M. 2023. A solar disinfection water treatment system for rural areas/Jordan. Al-Kitab J Pure Sci. 5(2):55–67. doi:10.32441/kjps.05.02.p5.
  • Suhaimi A, Abdulhameed AS, Jawad AH, Yousef TA, Al Duaij OK, ALOthman ZA, Wilson LD. 2022. Production of large surface area activated carbon from a mixture of carrot juice pulp and pomegranate peel using microwave radiation-assisted ZnCl2 activation: an optimized removal process and tailored adsorption mechanism of crystal violet dye. Diamond Relat Mater. 130:109456. doi:10.1016/j.diamond.2022.109456.
  • Suhaimi N, Kooh MRR, Lim CM, Chou Chao CT, Chou Chau YF, Mahadi AH, Chiang HP, Haji Hassan NH, Thotagamuge R. 2022. The use of Gigantochloa bamboo-derived biochar for the removal of methylene blue from aqueous solution. Adsorpt Sci Technol. 2022:1–12. doi:10.1155/2022/8245797.
  • Tamjid Farki NNL, Abdulhameed AS, Surip SN, ALOthman ZA, Jawad AH. 2023. Tropical fruit wastes including durian seeds and rambutan peels as a precursor for producing activated carbon using H3PO4-assisted microwave method: RSM-BBD optimization and mechanism for methylene blue dye adsorption. Int J Phytoremediation. :1–12. doi:10.1080/15226514.2023.2175780.
  • Temkin MI, Pyzhev V. 1940. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochimica URSS. 12:327–356.
  • Wang X, Fan X, Xie H, Li X, Hao C. 2022. Polyacrylic acid/carboxymethyl cellulose/activated carbon composite hydrogel for removal of heavy metal ion and cationic dye. Cellulose. 29(1):483–501. doi:10.1007/s10570-021-04286-8.
  • Wei M, Marrakchi F, Yuan C, Cheng X, Jiang D, Zafar FF, Fu Y, Wang S. 2022. Adsorption modeling, thermodynamics, and DFT simulation of tetracycline onto mesoporous and high-surface-area NaOH-activated macroalgae carbon. J Hazard Mater. 425:127887. doi:10.1016/j.jhazmat.2021.127887.
  • Yang ST, Chen S, Chang Y, Cao A, Liu Y, Wang H. 2011. Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci. 359(1):24–29. doi:10.1016/j.jcis.2011.02.064.
  • Yusop MFM, Ahmad MA, Rosli NA, Manaf, MEA. 2021. Adsorption of cationic methylene blue dye using microwave-assisted activated carbon derived from acacia wood: optimization and batch studies. Arab J Chem. 14(6):103122. doi:10.1016/j.arabjc.2021.103122.
  • Zain ZM, Abdulhameed AS, Jawad AH, ALOthman ZA, Yaseen ZM. 2023. A pH-sensitive surface of chitosan/sepiolite clay/algae biocomposite for the removal of malachite green and remazol brilliant blue R dyes: Optimization and adsorption mechanism study. J Polym Environ. 31(2):501–518. doi:10.1007/s10924-022-02614-y.
  • Zhu Y, Wang D, Zhang X, Qin H. 2009. Adsorption removal of methylene blue from aqueous solution by using bamboo charcoal. Fresenius Environ Bull. 18:369–376.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.