144
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancement of biosorption capability of imidazolium-based ionic liquid-treated Prosopis juliflora for the removal of malachite green from wastewater

, , , , , & show all

References

  • Akar E, Altinişik A, Seki Y. 2013. Using of activated carbon produced from spent tea leaves for the removal of malachite green from aqueous solution. Ecol Eng. 52:19–27. doi: 10.1016/j.ecoleng.2012.12.032.
  • Angalaeeswari K, Kamaludeen SPB. 2017. Utilization of mesquite (Prosopis juliflora) wood biochar for adsorption of nickel ions in aqueous solution. Int J Chem Stud. 5(4):687–690.
  • Azanfire B, Bulgariu D, Nemeş L, Bulgariu L. 2020. Optimization of experimental parameters for retention of Pb(II) ions from aqueous solution on clay adsorbent. Technium. 2(1):38–47. doi: 10.47577/technium.v2i1.40.
  • Baek MH, Ijagbemi CO, Se-Jin O, Kim DS. 2010. Removal of malachite green from aqueous solution using degreased coffee bean. J Hazard Mater. 176(1–3):820–828. doi: 10.1016/j.jhazmat.2009.11.110.
  • Barjasteh-Askari F, Davoudi M, Dolatabadi M, Ahmadzadeh S. 2021. Iron-modified activated carbon derived from agro-waste for enhanced dye removal from aqueous solutions. Heliyon. 7(6):e07191. doi: 10.1016/j.heliyon.2021.e07191.
  • Bibi A, Naz S, Uroos M. 2021. Evaluating the effect of ionic liquid on biosorption potential of peanut waste: experimental and theoretical studies. ACS Omega. 6(34):22259–22271. doi: 10.1021/acsomega.1c02957.
  • Borousan F, Yousefi F, Ghaedi M. 2019. Removal of malachite green dye using IRMOF-3-MWCNT-OH-Pd-NPs as a novel adsorbent: kinetic, isotherm, and thermodynamic studies. J Chem Eng Data. 64(11):4801–4814. doi: 10.1021/acs.jced.9b00298.
  • Bulgariu D, Nemeş L, Ahmad I, Bulgariu L. 2023. Isotherm and kinetic study of metal ions sorption on mustard waste biomass functionalized with polymeric thiocarbamate. Polymers. 15(10):2301. doi: 10.3390/polym15102301.
  • Bulgariu L, Bulgariu D. 2018. Functionalized soy waste biomass—a novel environmental-friendly biosorbent for the removal of heavy metals from aqueous solution. J Clean Prod. 197(October):875–885. doi: 10.1016/j.jclepro.2018.06.261.
  • Chandarana H, Kumar PS, Seenuvasan M, Kumar MA. 2021. Kinetics, equilibrium and thermodynamic investigations of methylene blue dye removal using Casuarina equisetifolia pines. Chemosphere. 285(December):131480. doi: 10.1016/j.chemosphere.2021.131480.
  • Chandrasekaran A, Patra C, Narayanasamy S, Subbiah S. 2020. Adsorptive removal of ciprofloxacin and amoxicillin from single and binary aqueous systems using acid-activated carbon from Prosopis juliflora. Environ Res. 188(September):109825. doi: 10.1016/j.envres.2020.109825.
  • Deng H, Li YF, Tao SQ, Li AY, Li QY, Hu LN. 2022. Efficient adsorption capability of banana and cassava biochar for malachite green: removal process and mechanism exploration. Environ Eng Res. 27(3):200575. doi: 10.4491/eer.2020.575.
  • Dubinin MM. 1960. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem Rev. 60(2):235–241. doi: 10.1021/cr60204a006.
  • Elgarahy AM, Elwakeel KZ, Mohammad SH, Elshoubaky GA. 2021. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean Eng Technol. 4:100209. doi: 10.1016/j.clet.2021.100209.
  • Fakhar N, Khan SA, Siddiqi WA, Khan TA. 2021. Ziziphus jujube waste-derived biomass as cost-effective adsorbent for the sequestration of Cd2+ from aqueous solution: isotherm and kinetics studies. Environ Nanotechnol. 16(December):100570. doi: 10.1016/j.enmm.2021.100570.
  • Freundlich H. 1907. Über die adsorption in lösungen. Z Phys Chem. 57U(1):385–470. doi: 10.1515/zpch-1907-5723.
  • Ghosal PS, Gupta AK. 2017. Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J Mol Liq. 225(January):137–146. doi: 10.1016/j.molliq.2016.11.058.
  • Goswami R, Mishra A, Prasad B, Bhatt N. 2023. Development of nanocellulose-chitosan-based nanocomposite for adsorption of malachite green: isotherms and kinetic study. Water Air Soil Pollut. 234(5):315. doi: 10.1007/s11270-023-06330-8.
  • Guo F, Jiang X, Li X, Jia X, Liang S, Qian L. 2020. Synthesis of MgO/Fe3O4 nanoparticles embedded activated carbon from biomass for high-efficient adsorption of malachite green. Mater Chem Phys. 240(January):122240. doi: 10.1016/j.matchemphys.2019.122240.
  • Han R, Wang Y, Sun Q, Wang L, Song J, He X, Dou C. 2010. Malachite green adsorption onto natural zeolite and reuse by microwave irradiation. J Hazard Mater. 175(1–3):1056–1061. doi: 10.1016/j.jhazmat.2009.10.118.
  • Ho YS, Mckay G. 1999. Pseudo-second order model for sorption processes. Process Biochem. 34(5):451–465. doi: 10.1016/S0032-9592(98)00112-5.
  • Isosaari P, Srivastava V, Sillanpää M. 2019. Ionic liquid-based water treatment technologies for organic pollutants: current status and future prospects of ionic liquid mediated technologies. Sci Total Environ. 690(November):604–619. doi: 10.1016/j.scitotenv.2019.06.421.
  • Jalil AA, Triwahyono S, Yaakob MR, Azmi ZZA, Sapawe N, Kamarudin NHN, Setiabudi HD, Jaafar NF, Sidik SM, Adam SH, et al. 2012. Utilization of bivalve shell-treated Zea mays L. (maize) husk leaf as a low-cost biosorbent for enhanced adsorption of malachite green. Bioresour Technol. 120(September):218–224. doi: 10.1016/j.biortech.2012.06.066.
  • Karimi L, Zohoori S, Yazdanshenas ME. 2014. Photocatalytic degradation of azo dyes in aqueous solutions under UV irradiation using nano-strontium titanate as the nanophotocatalyst. J Saudi Chem Soc. 18(5):581–588. doi: 10.1016/j.jscs.2011.11.010.
  • Kaur G, Singh N, Rajor A. 2022. RSM-CCD optimized Prosopis juliflora activated carbon for the adsorptive uptake of ofloxacin and disposal studies. Environ Technol Innov. 25(February):102176. doi: 10.1016/j.eti.2021.102176.
  • Khattri S, Singh M. 1999. Colour removal from dye wastewater using sugar cane dust as an adsorbent. Adsorp. Sci. Technol. 17(4):269–282. doi: 10.1177/026361749901700404.
  • Khattri S, Singh M. 2009. Removal of malachite green from dye wastewater using neem sawdust by adsorption. J Hazard Mater. 167(1–3):1089–1094. doi: 10.1016/j.jhazmat.2009.01.101.
  • Kheradmand A, Negarestani M, Mollahosseini A, Shayesteh H, Farimaniraad H. 2022. Low-cost treated lignocellulosic biomass waste supported with FeCl3/Zn(NO3)2 for water decolorization. Sci Rep. 12(1):16442. doi: 10.1038/s41598-022-20883-4.
  • Koyuncu H, Kul A. 2020. Biosorption study for removal of methylene blue dye from aqueous solution using a novel activated carbon obtained from nonliving lichen (Pseudevernia furfuracea (l.) zopf.). Surf Interfaces. 19(June):100527. doi: 10.1016/j.surfin.2020.100527.
  • Kumar M, Tamilarasan R. 2013. Modeling Studies: adsorption of aniline blue by using Prosopis juliflora carbon/Ca/alginate polymer composite beads. Carbohydr Polym. 92(2):2171–2180. doi: 10.1016/j.carbpol.2012.11.076.
  • Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 40(9):1361–1403. doi: 10.1021/ja02242a004.
  • Lawal I, Moodley B. 2017. Sorption mechansim of pharmaceuticals from aqueous medium on ionic liquid modified biomass. J Chem Technol Biotechnol. 92(4):808–818. doi: 10.1002/jctb.5063.
  • Liang C, Sun S, Li F, Ong Y, Chung T. 2014. Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. J Membr Sci. 469(November):306–315. doi: 10.1016/j.memsci.2014.06.057.
  • Liu Y. 2006. Some consideration on the Langmuir isotherm equation. Colloids Surf A: physicochem Eng. 274(1–3):34–36. doi: 10.1016/j.colsurfa.2005.08.029.
  • Mahalakshmi M, Saranaathan SE. 2019. Film-pore diffusion modeling for the adsorption of aqueous dye solution onto acid-treated sugarcane bagasse. Desalin Water Treat. 168(November):324–339. doi: 10.5004/dwt.2019.24645.
  • Manjunath S, Kumar M. 2021. Simultaneous removal of antibiotic and nutrients via Prosopis juliflora activated carbon column: performance evaluation, effect of operational parameters and breakthrough modeling. Chemosphere. 262(January):127820. doi: 10.1016/j.chemosphere.2020.127820.
  • Mathialagan K, Ramesh Kumar K, Sadhanantham J, Syed Abdul Rahman S, Pasupathi S, Mathivanan M, Karuppiah S. 2023. Delonix regia seed pod—an efficient biosorptive candidate toward the removal of rhodamine b from simulated wastewater: characterization, kinetics, and equilibrium approach. Int J Phytoremediation. 25(8):1077–1094. doi: 10.1080/15226514.2022.2128042.
  • Mathivanan M, Syed Abdul Rahman S, Vedachalam R, Surya Pavan Kumar A, Sabareesh G, Karuppiah S. 2021. Ipomoea carnea: a novel biosorbent for the removal of methylene blue (MB) from aqueous dye solution: kinetic, equilibrium and statistical approach. Int J Phytoremediation. 23(9):982–1000. doi: 10.1080/15226514.2020.1871322.
  • Merrad S, Abbas M, Trari M. 2023. Adsorption of malachite green onto walnut shells: kinetics, thermodynamic, and regeneration of the adsorbent by chemical process. Fibers Polym. 24(3):1067–1081. doi: 10.1007/s12221-023-00025-x.
  • Miranda MA, Dhandapani P, Kalavathy M, Miranda L. 2010. Chemically activated Ipomoea carnea as an adsorbent for the copper sorption from synthetic solutions. Adsorption. 16(1–2):75–84. doi: 10.1007/s10450-010-9209-2.
  • Mishra S, Cheng L, Maiti A. 2021. The utilization of agro-biomass/byproducts for effective bio-removal of dyes from dyeing wastewater: a comprehensive review. J Environ Chem Eng. 9(1):104901. doi: 10.1016/j.jece.2020.104901.
  • Mo J, Yang Q, Zhang N, Zhang W, Zheng Y, Zhang Z. 2018. A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J Environ Manag. 227:395–405. doi: 10.1016/j.jenvman.2018.08.069.
  • Moustafa MT. 2023. Preparation and characterization of low-cost adsorbents for the efficient removal of malachite green using response surface modeling and reusability studies. Sci Rep. 13(1):4493. doi: 10.1038/s41598-023-31391-4.
  • Nair V, Vinu R. 2016. Peroxide-assisted microwave activation of pyrolysis char for adsorption of dyes from wastewater. Bioresour Technol. 216(September):511–519. doi: 10.1016/j.biortech.2016.05.070.
  • Nguyen TA, Fu CC, Juang RS. 2016. Effective removal of sulfur dyes from water by biosorption and subsequent immobilized laccase degradation on crosslinked chitosan beads. J Chem Eng. 304:313–324. doi: 10.1016/j.cej.2016.06.102.
  • Pasupathi S, Syed Abdul Rahman S, Karuppiah S. 2023. Removal of cationic and anionic toxic pollutants from simulated solutions using Sterculia foetida pod (SFP): equilibrium isotherm, kinetics, and characterization. Int J Phytoremediation. 1–19. doi: 10.1080/15226514.2023.2208230.
  • Praveen S, Jegan J, Pushpa TB, Gokulan R, Bulgariu L. 2022. Biochar for removal of dyes in contaminated water: an overview. Biochar. 4(1):10. doi: 10.1007/s42773-022-00131-8.
  • Ramesh P, Padmanabhan V, Arunadevi R, Sudha PN, Mustafa AEZ, Al-Ghamdi Ahmed A, Alajmi AH, Elshikh MS. 2021. Batch and column mode removal of the turquoise blue (TB) over bio-char based adsorbent from Prosopis juliflora: comparative study. Chemosphere. 271(May):129426. doi: 10.1016/j.chemosphere.2020.129426.
  • Rangabhashiyam S, Balasubramanian P. 2018. Performance of novel biosorbents prepared using native and naoh treated Peltophorum pterocarpum fruit shells for the removal of malachite green. Bioresour Technol Rep. 3(September):75–81. doi: 10.1016/j.biteb.2018.06.004.
  • Rangabhashiyam S, Lata S, Balasubramanian P. 2018. Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent. Surf Interfaces. 10(March):197–215. doi: 10.1016/j.surfin.2017.09.011.
  • Rangabhashiyam S, Selvaraju N. 2015. Adsorptive remediation of hexavalent chromium from synthetic wastewater by a natural and ZnCl2 activated Sterculia guttata shell. J Mol Liq. 207:39–49. doi: 10.1016/j.molliq.2015.03.018.
  • Saha P, Chowdhury S, Gupta S, Kumar I, Kumar R. 2010. Assessment on the removal of malachite green using tamarind fruit shell as biosorbent. CLEAN Soil Air Water. 38(5–6):437–445. doi: 10.1002/clen.200900234.
  • Sarkar S, Tiwari N, Basu A, Behera M, Das B, Chakrabortty S, Sanjay K, Suar M, Adhya TK, Banerjee S, et al. 2021. Sorptive removal of malachite green from aqueous solution by magnetite/coir pith supported sodium alginate beads: kinetics, isotherms, thermodynamics and parametric optimization. Environ Technol Innov. 24(November):101818. doi: 10.1016/j.eti.2021.101818.
  • Selvakumar A, Rangabhashiyam S. 2019. Biosorption of Rhodamine B onto novel biosorbents from Kappaphycus alvarezii, Gracilaria salicornia and Gracilaria edulis. Environ Pollut. 255(Pt 2):113291. doi: 10.1016/j.envpol.2019.113291.
  • Sennu P, Choi HJ, Baek SG, Aravindan V, Lee YS. 2016. Tube-like carbon for li-ion capacitors derived from the environmentally undesirable plant: Prosopis juliflora. Carbon. 98(March):58–66. doi: 10.1016/j.carbon.2015.10.087.
  • Shayesteh H, Rahbar-Kelishami A, Norouzbeigi R. 2016. Adsorption of malachite green and crystal violet cationic dyes from aqueous solution using pumice stone as a low-cost adsorbent: kinetic, equilibrium, and thermodynamic studies. Desalin Water Treat. 57(27):12822–12831. doi: 10.1080/19443994.2015.1054315.
  • Shetty B, Yashodha SR, Johns J. 2023. A green approach to the removal of malachite green dye from aqueous medium using chitosan/cellulose blend. Fibers Polym. 24(4):1297–1307. doi: 10.1007/s12221-023-00134-7.
  • Sivaraman S, Anbuselvan NM, Venkatachalam P, Shanmugam SR, Rangabhashiyam S. 2022. Waste tire particles as efficient materials towards hexavalent chromium removal: characterisation, adsorption behaviour, equilibrium, and kinetic modelling. Chemosphere. 295(May):133797. doi: 10.1016/j.chemosphere.2022.133797.
  • Subramaniyasharma S, Shanmugam SR, Bhuvaneswari V, Ponnusami V, Rangabhashiyam S. 2023. Pyrolysis of an invasive weed Prosopis juliflora wood biomass for the adsorptive removal of ciprofloxacin. Biomass Convers Bioref. 13(11):9435–9450. doi: 10.1007/s13399-023-03799-5.
  • Tukaram Bai M, Shaik O, Kavitha J, Hemanth Varma MS, Chittibabu N. 2020. Biosorption of eosin yellow dye from aqueous solution using sugarcane bagasse: equilibrium, kinetics and thermodynamics. Mater Today: proc. 26:842–849. doi: 10.1016/j.matpr.2020.01.051.
  • Türgay O, Ersöz G, Atalay S, Forss J, Welander U. 2011. The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Sep Purif Technol. 79(1):26–33. doi: 10.1016/j.seppur.2011.03.007.
  • VenkataRao P, SaiTarun G, Govardhani C, Manasa B, Joy PJ, Vangalapati M. 2020. Biosorption of congo red dye from aqueous solutions using synthesized silver nano particles of Grevillea robusta: kinetic studies. Mater Today: proc. 26:3009–3014. doi: 10.1016/j.matpr.2020.02.626.
  • Wahib SA, Da’na DA, Zaouri N, Hijji YM, Al-Ghouti MA. 2022. Adsorption and recovery of lithium ions from groundwater using date pits impregnated with cellulose nanocrystals and ionic liquid. J Hazard Mater. 421:126657. doi: 10.1016/j.jhazmat.2021.126657.
  • Weber WJ, Morris JC. 1963. Kinetics of adsorption on carbon from solution. J Sanit Eng Div. 89(2):31–59. doi: 10.1061/JSEDAI.0000430.
  • Zhong LX, Peng XW, Yang D, Sun RC. 2012. Adsorption of heavy metals by a porous bioadsorbent from lignocellulosic biomass reconstructed in an ionic liquid. J Agric Food Chem. 60(22):5621–5628. doi: 10.1021/jf301182x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.