147
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Greenhouse investigation on the phytoremediation potential of pioneer tree Pinus halepensis Mill. in abandoned mine site

, , , , , & show all

References

  • Ahirwal J, Pandey VC. 2021. Restoration of mine-degraded land for sustainable environmental development. Restoration Ecology. 29(4):1061–2971. doi: 10.1111/rec.13268.
  • Aversa G, Balassone G, Boni M, Amalfitano C. 2002. The mineralogy of the “calamine” Ores in SW-Sardinia (Italy): preliminary results. Period Mineral. 71:201–218.
  • Bacchetta G, Bagella S, Biondi E, Farris E, Filigheddu R, Mossa L. 2009. Vegetazione forestale e serie di vegetazione della Sardegna (con rappresentazione cartografica alla scala 1:350.000). Fitosociologia. 46:3–82.
  • Bacchetta G, Boi ME, Cappai G, De Giudici G, Piredda M, Porceddu M. 2018. Metal Tolerance Capability of Helichrysum microphyllum Cambess. subsp. tyrrhenicum Bacch., Brullo & Giusso: a candidate for phytostabilization in abandoned mine sites. Bull Environ Contam Toxicol. 101(6):758–765. doi: 10.1007/s00128-018-2463-9.
  • Bacchetta G, Cao A, Cappai G, Carucci A, Casti M, Fercia ML, Lonis R, Mola F. 2012. A field experiment on the use of Pistacia lentiscus L. and Scrophularia canina L. subsp. bicolor (Sibth. & Sm.) Greuter for the phytoremediation of abandoned mining areas. Plant Biosystems. 146(4):1054–1063. doi: 10.1080/11263504.2012.704886.
  • Bacchetta G, Cappai G, Carucci A, Tamburini E. 2015. Use of native plants for the remediation of abandoned mine sites in Mediterranean semiarid environments. Bull Environ Contam Toxicol. 94(3):326–333. doi: 10.1007/s00128-015-1467-y.
  • Baker AJM, Ernst WHO, Van Der Ent A, Malaisse F, Ginocchio R. 2010. Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. In: Batty L, Hallberg K, editors. Ecology of industrial pollution (Ecological Reviews). Cambridge (UK): Cambridge University Press. p. 7–40.
  • Barbafieri M, Dadea C, Tassi E, Bretzel F, Fanfani L. 2011. Uptake of heavy-metals by native species growing in a mining area in Sardinia-Italy: discovering native flora for phytoremediation. Int J Phytoremediation. 13(10):985–997. doi: 10.1080/15226514.2010.549858.
  • Barbafieri M, Lubrano L, Petruzzelli G. 1996. Characterization of pollution in sites contaminated by heavy-metals: a proposal. Annual Chemistry. 86:585–594.
  • Barbéro M, Loisel R, Quézel P, Richardson DM, Romane F, Richardson DM. 1998. Pines of Mediterranean Basin. In: Richardson DM, editor. Ecology and biogeography of Pinus. Cambridge (UK): Cambridge University Press. p. 153–170.
  • Bartolucci F, Domina G, Andreatta S, Angius R, Ardenghi NMG, Bacchetta G, Ballelli S, Banfi E, Barberis D, Barberis G, et al. 2020. Notulae to the Italian vascular flora: 9. Ital Bot. 9:71–86. doi: 10.3897/italianbotanist.9.53429.
  • Bartolucci F, Peruzzi L, Galasso G, Albano A, Alessandrini A, Ardenghi NMG, Astuti G, Bacchetta G, Ballelli S, Banfi E, et al. 2018. An updated checklist of the vascular flora native to Italy. Plant Biosystems. 152(2):179–303. doi: 10.1080/11263504.2017.1419996.
  • Bechstädt T, Boni M. 1994. Sedimentological, stratigraphical and ore-deposits field guide of the autochthonous Cambro Ordovician of Southwestern Sardinia. Vol. 48. Italy: Istituto Poligrafico dello Stato. p. 434.
  • Boi ME, Porceddu M, Cappai G, De Giudici G, Bacchetta G. 2019. Effects of zinc and lead on seed germination of Helichrysum microphyllum subsp. tyrrhenicum, a metal-tolerant plant. Environ Sci Technol. 17:1917–1928.
  • Boi ME, Medas D, Aquilanti G, Bacchetta G, Birarda G, Cappai G, Carlomagno I, Casu MA, Gianoncelli A, Meneghini C, et al. 2020. Mineralogy and Zn chemical speciation in a soil‐plant system from a metal‐extreme environment: a study on Helichrysum microphyllum subsp. tyrrhenicum (Campo Pisano Mine, SW-Sardinia, Italy). Minerals. 10(3):259. doi: 10.3390/min10030259.
  • Boi ME, Cappai G, De Giudici G, Medas D, Piredda M, Porceddu M, Bacchetta G. 2021. Ex situ phytoremediation trial of Sardinian mine waste using a pioneer plant species. Environ Sci Pollut Res Int. 28(39):55736–55753. doi: 10.1007/s11356-021-14710-y.
  • Boni M, Costabile S, De Vivo B, Gasparrini M. 1999. Potential environmental hazard in the mining district of southern Iglesiente (SW Sardinia, Italy). Geochemical Exploration. 67(1-3):417–430. doi: 10.1016/S0375-6742(99)00078-3.
  • Brunetti G, Soler-Rovira P, Farrag K, Senesi N. 2009. Tolerance and accumulation of heavy-metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy. Plant Soil. 318(1-2):285–298. doi: 10.1007/s11104-008-9838-3.
  • Cao A, Cappai G, Carucci A, Lai T. 2008. Heavy metal-bioavailability and chelate-mobilization efficiency in an assisted phytoextraction process. Environ Geochem Health. 30(2):115–119. doi: 10.1007/s10653-008-9136-2.
  • Cao A, Carucci A, Lai T, Bacchetta G, Casti M. 2009. Use of native species and biodegradable chelating agent in phytoremediation of abandoned mining area. J Chem Technol Biotechnol. 84(6):884–889. doi: 10.1002/jctb.2179.
  • Cidu R, Biagini C, Fanfani L, La Ruffa G, Marras I. 2001. Mine closure at Monteponi (Italy): effect of the cessation of dewatering on the quality of shallow groundwater. Appl Geochem. 16(5):489–502. doi: 10.1016/S0883-2927(00)00046-9.
  • Clemente R, Bernal MP. 2006. Fractionation of heavy-metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere. 64(8):1264–1273. doi: 10.1016/j.chemosphere.2005.12.058.
  • Concas A, Ardau C, Cristini A, Zuddas P, Cao G. 2006. Mobility of heavy metals from tailings to stream-waters in a mining activity contaminated site. Chemosphere. 63(2):244–253. doi: 10.1016/j.chemosphere.2005.08.024.
  • Concas S, Lattanzi P, Bacchetta G, Barbafieri M, Vacca A. 2015. Zn, Pb and Hg contents of Pistacia lentiscus L. grown on heavy-metal-rich soils: implications for phytostabilization. Water Air Soil Pollut. 226(10):340–354. doi: 10.1007/s11270-015-2609-x.
  • Conesa HM, Pàrraga-Aguado I. 2021. Effects of a soil organic-amendment on metal allocation of trees for the phytomanagement of mining-impacted soils. Environ Geochem Health. 43(4):1355–1366. doi: 10.1007/s10653-019-00479-0.
  • De Giudici G, Medas D, Meneghini C, Casu MA, Gianoncelli A, Iadecola A, Podda S, Lattanzi P. 2015. Microscopic biomineralization processes and Zn-bioavailability: a synchrotron-based investigation of Pistacia lentiscus L. roots. Environ Sci Pollut Res Int. 22(24):19352–19361. doi: 10.1007/s11356-015-4808-9.
  • Disante KB, Fuentes D, Cortina J. 2010. Sensitivity to zinc of Mediterranean woody-species important for restoration. Sci Total Environ. 408(10):2216–2225. doi: 10.1016/j.scitotenv.2009.12.045.
  • Fady B, Semerci H, Vendramin GG. 2003. EUFORGEN technical guidelines for genetic conservation and use for Aleppo pine (Pinus halepensis) and Brutia pine (Pinus brutia). Rome, Italy: International Plant Genetic Resources Institute.
  • Fagnano M, Adamo P, Zampella M, Fiorentino N. 2011. Environmental and agronomic impact of fertilization with composted organic-fraction from municipal solid waste: a case study in the region of Naples, Italy. Agricultural Ecosystem Environment. 141(1-2):100–107. doi: 10.1016/j.agee.2011.02.019.
  • Farjon A. 2017. A handbook of the world’s conifers Second. revised edition. Brill: Leiden-Boston.
  • Favas PJC, Pratas j, Prasad MNV. 2013. Temporal variation in the arsenic and metal accumulation in the maritime pine tree grown on contaminated soils. Int J Environ Sci Technol. 10(4):809–826. doi: 10.1007/s13762-012-0115-x.
  • Favas PJC, Pratas J, Chaturvedi R, Paul MS, Prasad MNV. 2016. Tree crops on abandoned mines for environmental remediation and industrial feedstock. Bioremediation and bioeconomy. Amsterdam: Elsevier. p. 219–249.
  • Fellet G, Marchiol L, Perosa D, Zerbi G. 2007. The application of phytoremediation technology in a soil-contaminated by pyrite-cinders. Ecol Eng. 31(3):207–214. doi: 10.1016/j.ecoleng.2007.06.011.
  • Feng MH, Shan XQ, Zhang S, Wen B. 2005. Comparison of rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat. Chemosphere. 59(7):939–949. doi: 10.1016/j.chemosphere.2004.11.056.
  • Fenu G, Fois M, Cañadas EM, Bacchetta G. 2014. Using endemic-plant distribution, geology and geomorphology in biogeography: the case of Sardinia (Mediterranean Basin). Syst Biodivers. 12(2):181–193. – doi: 10.1080/14772000.2014.894592.
  • Fernández-Ondoño E, Bacchetta G, Lallena AM, Navarro FB, Ortiz I, Jiménez MN. 2017. Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia. J Geochem Explor. 172:133–141. doi: 10.1016/j.gexplo.2016.09.013.
  • Guan T, He HB, Zhang XD, Bai Z. 2011. Cu fractions, mobility and bioavailability in soil-wheat system after Cu-enriched livestock manure applications. Chemosphere. 82(2):215–222. doi: 10.1016/j.chemosphere.2010.10.018.
  • Guri. 2006. Nome in Materie Ambientale, Norme in Materia Ambientale. Decreto Legislativo. 3 Aprilen. (152) Supplemento Ordinario n. 96, Gazzetta Ufficiale: Roma, Italy (In Italian).
  • Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G, De Giudici G. 2022. Perspectives for phytoremediation capability of native plants growing on Angouran Pb–Zn mining complex in northwest of Iran. J Environ Manage. 315:115184. doi: 10.1016/j.jenvman.2022.115184.
  • Jiménez MN, Bacchetta G, Casti M, Navarro FB, Lallena AM, Fernandèz-Ondono E. 2011. Potential use in phytoremediation of three plant species growing on contaminated mine-tailing soils in Sardinia. Ecol Eng. 37(2):392–398. doi: 10.1016/j.ecoleng.2010.11.030.
  • Jiménez MN, Bacchetta G, Casti M, Navarro FB, Lallena AM, Fernandez-Ondono E. 2014. Study of Zn, Cu and Pb content in plants and contaminated soils in Sardinia. Plant Biosystems. 148(3):419–428. doi: 10.1080/11263504.2013.776651.
  • Jiménez MN, Bacchetta G, Navarro FB, Casti M, Fernández-Ondoño E. 2021. Native plant capacity for gentle-remediation in heavily-polluted mines. Applied Science. 11(4):1769. doi: 10.3390/app11041769.
  • Kabata-Pendias A. 2011. Trace elements in soils and plants. Boca Raton: CRC Press.
  • Kharazian P, Bacchetta G, Cappai G, Piredda M, De Giudici G. 2022. An integrated geochemical and mineralogical investigation on soil-plant system of Pinus halepensis pioneer tree growing on heavy metal polluted mine tailing. Plant Biosyst. 157(2):272–285. doi: 10.1080/11263504.2022.2100502.
  • Kharazian P, Fernández-Ondoño E, Jiménez MN, Sierra Aragón M, Aguirre-Arcos A, Bacchetta G, Cappai G, De Giudici G. 2022. Pinus halepensis in contaminated mining sites: study of the transfer of metals in the plant-soil system using the BCR-procedure. Toxics. 10(12):728. doi: 10.3390/toxics10120728.
  • Lai T, Cappai G, Carucci A, Bacchettac G. 2015. Phytoremediation of abandoned mining areas using native plant species: A Sardinian case study. Environ Sci Technol. 11:255–277.
  • Lindsay WL, Norvell WA. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Soc of Amer J. 42(3):421–428. doi: 10.2136/sssaj1978.03615995004200030009x.
  • Mandaresu M, Dessì L, Lallai A, Porceddu M, Boi ME, Bacchetta G, Pivetta T, Lussu R, Ardu R, Pinna M, et al. 2023. Helichrysum microphyllum subsp. tyrrhenicum, its root-associated microorganisms and wood chips represent an integrated green technology for the remediation of petroleum hydrocarbon-contaminated soils. Agronomy. 13(3):812. doi: 10.3390/agronomy13030812.
  • Marchiol L, Fellet G, Boscutti F, Montella C, Mozzi R, Guarino C. 2013. Gentle remediation at the former “Pertusola Sud” zinc smelter: evaluation of native species for phytoremediation purposes. Ecol Eng. 53:343–353. doi: 10.1016/j.ecoleng.2012.12.072.
  • Mauri A, Di Leo M, de Rigo D, Caudullo G. 2016. Pinus halepensis and Pinus brutia in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri, editors. European atlas of forest tree species. Luxembourg: Publication EU. p. 166–123.
  • Medas D, De Giudici G, Casu MA, Musu E, Gianoncelli A, Iadecola A, Meneghini C, Tamburini E, Sprocati AR, Turnau K, et al. 2015. Microscopic processes ruling the bioavailability of Zn to roots of Euphorbia pithyusa L. pioneer plant. Environ Sci Technol. 49(3):1400–1408. doi: 10.1021/es503842w.
  • Medas D, De Giudici G, Pusceddu C, Casu MA, Birarda G, Vaccari L, Gianoncelli A, Meneghini C. 2019. Impact of Zn excess on biomineralization processes in Juncus acutus grown in mine-polluted sites. J Hazard Mater. 370:98–107. doi: 10.1016/j.jhazmat.2017.08.031.
  • Mendez MO, Maier RM. 2008. Phytostabilization of mine-tailings in arid and semiarid environments‐an emerging remediation technology. Environ Health Perspect. 116(3):278–283. doi: 10.1289/ehp.10608.
  • Monaci F, Trigueros D, Mingorance MD, Rossini-Oliva S. 2020. Phytostabilization potential of Erica australis L. and Nerium oleander L.: a comparative study in the rio-tinto mining area (SW-Spain). Environ Geochem Health. 42(8):2345–2360. doi: 10.1007/s10653-019-00391-7.
  • Nagajyoti PC, Lee KD, Sreekanth TVM. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett. 8(3):199–216. doi: 10.1007/s10311-010-0297-8.
  • Párraga-Aguado I, Álvarez-Rogel J, González-Alcaraz MN, Jiménez-Cárceles FJ, Conesa HM. 2013. Assessment of metal(loid)s availability and their uptake by Pinus halepensis in a Mediterranean forest impacted by abandoned-tailings. Ecol Eng. 58:84–90. doi: 10.1016/j.ecoleng.2013.06.013.
  • Pesaresi S, Biondi E, Vagge I, Galdenzi D, Casavecchia S. 2017. The Pinus halepensis Mill. forests in the central-eastern European Mediterranean basin. Plant Biosystems. 151(3):512–529. doi: 10.1080/11263504.2017.1302514.
  • Pignatti S, Guarino R, Rosa ML. 2017, 2018, 2019. Flora d‘Italia. Vols. 1,2,3,4. 2nd ed. Bologna (MI), Italy: Edagricole.
  • Porceddu M, Santo A, Orru M, Meloni F, Ucchesu M, Picciau R, Bacchetta G. 2017. Seed conservation actions for the preservation of plant diversity: the case of the Sardinian Germplasm Bank (BG-SAR). Plant Sociology. 54:111–117.
  • Querejeta JI, Barberá GG, Granados A, Castillo VM. 2008. Afforestation method affects the isotopic composition of planted Pinus halepensis in a semiarid region of Spain. For Ecol Manag. 254(1):56–64. doi: 10.1016/j.foreco.2007.07.026.
  • Rathore SS, Shekhawat L, Dass A, Kandpal BK, Singh VK. 2019. Phytoremediation mechanism in Indian mustard (Brassica juncea) and its enhancement through agronomic interventions. Proc Natl Acad Sci India B. 89(2):419–427. doi: 10.1007/s40011-017-0885-5.
  • Rodríguez-Vila A, Asensio V, Forján R, Covelo EF. 2016. Assessing the influence of technosol and biochar-amendments combined with Brassica juncea L. on the fractionation of Cu, Ni, Pb and Zn in a polluted-mine soil. J Soils Sediments. 16(2):339–348. doi: 10.1007/s11368-015-1222-3.
  • Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA. 1993. Flora Europaea vol.1, Lycopodiaceae to Plantaginaceae. Cambridge: Cambridge University Press.
  • United State Department of Agriculture [USDA]. 1998. Soil quality indicators: pH. Washington (DC): Office of director for civil rights [accessed 2023 Apr 4]. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5293776.pdf.
  • Ussiri DAN, Lal R. 2008. Method for determining coal-carbon in the reclaimed mine soils contaminated with coal. Soil Sci Soc Amer J. 72(1):231–237. doi: 10.2136/sssaj2007.0047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.