78
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparison of effect of CdS QD and ZnS QD and their corresponding salts on growth, chlorophyll content and antioxidative capacity of tomato

, , , , , , & ORCID Icon show all

References

  • Al Zahrani HS, Nahar K, Alharby HF, Alsamadany H, Hakeem KR, Hasanuzzaman M. 2022. Zinc supplementation enhances glutathione-mediated antioxidant defense and glyoxalase systems to conferring salt tolerance in soybean (Glycine max L.). Agronomy. 12(5):1032. doi: 10.3390/agronomy12051032.
  • Banerjee R, Goswami P, Chakrabarti M, Chakraborty D, Mukherjee A, Mukherjee A. 2021. Cadmium selenide (CdSe) quantum dots cause genotoxicity and oxidative stress in Allium cepa plants. Mutat Res Genet Toxicol Environ Mutagen. 865:503338. doi: 10.1016/j.mrgentox.2021.503338.
  • Ben Ammar W, Mediouni C, Tray B, Ghorbel MH, Jemal F. 2008. Glutathione and phytochelatin contents in tomato plants exposed to cadmium. Biologia Plant. 52(2):314–320. doi: 10.1007/s10535-008-0065-9.
  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. 2007. Zinc in plants. New Phytol. 173(4):677–702. doi: 10.1111/j.1469-8137.2007.01996.x.
  • Cabot C, Martos S, Llugany M, Gallego B, Tolrà R, Poschenrieder C. 2019. A role for zinc in plant defense against pathogens and herbivores. Front Plant Sci. 10:1171. doi: 10.3389/fpls.2019.01171.
  • Çelik Ö, Ayan A, Atak Ç. 2017. Enzymatic and non-enzymatic comparison of two different industrial tomato (Solanum lycopersicum) varieties against drought stress. Bot Stud. 58(1):32. doi: 10.1186/s40529-017-0186-6.
  • Chen W, Dong Y, Hu G, Bai X. 2018. Effects of exogenous nitric oxide on cadmium toxicity and antioxidative system in perennial ryegrass. J Soil Sci Plant Nutr. 18(ahead):0–0. doi: 10.4067/S0718-95162018005000601.
  • Chen H, Gong Y, Han R. 2014. Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings. PLoS One. 9(10):e110400. doi: 10.1371/journal.pone.0110400.
  • Claus J, Bohmann A, Chavarría-Krauser A. 2013. Zinc uptake and radial transport in roots of Arabidopsis thaliana: a modelling approach to understand accumulation. Ann Bot. 112(2):369–380. doi: 10.1093/aob/mcs263.
  • Cruz-Carrión Á, Calani L, de Azua MJR, Mena P, Del Rio D, Suárez M, Arola-Arnal A. 2022. (Poly)phenolic composition of tomatoes from different growing locations and their absorption in rats: a comparative study. Food Chem. 388:132984. doi: 10.1016/j.foodchem.2022.132984.
  • Floegel A, Kim D-O, Chung S-J, Koo SI, Chun OK. 2011. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compost Anal. 24(7):1043–1048. doi: 10.1016/j.jfca.2011.01.008.
  • Francesca S, Najai S, Zhou R, Decros G, Cassan C, Delmas F, Ottosen CO, Barone A, Rigano MM. 2022. Phenotyping to dissect the biostimulant action of a protein hydrolysate in tomato plants under combined abiotic stress. Plant Physiol Biochem. 179:32–43. doi: 10.1016/j.plaphy.2022.03.012.
  • Goncharuk EA, Zagoskina NV. 2023. Heavy metals, their phytotoxicity, and the role of phenolic antioxidants in plant stress responses with focus on cadmium: review. Molecules. 28(9):3921. doi: 10.3390/molecules28093921.
  • Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M. 2021. Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Saf. 211:111887. doi: 10.1016/j.ecoenv.2020.111887.
  • Imperiale D, Lencioni G, Marmiroli M, Paesano L, Zappettini A, White JC, Marmiroli N. 2022. Data on the interaction of hyperaccumulating plants with nanoscale metals Zn and Cd. Data Brief. 42:108171. doi: 10.1016/j.dib.2022.108171.
  • Kaur H, Garg N. 2021. Zinc toxicity in plants: a review. Planta. 253(6):129. doi: 10.1007/s00425-021-03642-z.
  • Klee HJ, Giovannoni JJ. 2011. Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet. 45:1, 41–59. doi: 10.1146/annurev-genet-110410-132507.
  • Kumar SM, Saroja M, Venkatachalam M. 2019. Acalypha Indica and Curcuma Longa plant extracts mediated ZnS nanoparticles. Mat Sci Res India. 16(2):174–182. doi: 10.13005/msri/160210.
  • Li Y, Liu C, Zhang J, Yang H, Xu L, Wang Q, Sack L, Wu X, Hou J, He N. 2018a. Variation in leaf chlorophyll concentration from tropical to cold-temperate forests: association with gross primary productivity. Ecol. Indic. 85:383–389. doi: 10.1016/j.ecolind.2017.10.025.
  • Li R, Sun H, Wang S, Wang Y, Yu K. 2018b. Retention of CdS/ZnS Quantum Dots (QDs) on the root epidermis of woody plant and its implications by benzo[a]pyrene: evidence from the in Situ synchronous nanosecond time-resolved fluorescence spectra method. J Agric Food Chem. 66(4):814–821. doi: 10.1021/acs.jafc.7b04258.
  • Mahmoud A, AbdElgawad H, Hamed BA, Beemster GT, El-Shafey NM. 2021. Differences in cadmium accumulation, detoxification and antioxidant defenses between contrasting maize cultivars implicate a role of superoxide dismutase in Cd tolerance. Antioxidants. 10(11):1812. doi: 10.3390/antiox10111.
  • Marmiroli M, Imperiale D, Pagano L, Villani M, Zappettini A, Marmiroli N. 2015. The proteomic response of Arabidopsis thaliana to cadmium sulfide quantum dots, and its correlation with the transcriptomic response. Front Plant Sci. 6:1104. doi: 10.3389/fpls.2015.01104.
  • Marmiroli M, Lepore GO, Pagano L, d‘Acapito F, Gianoncelli A, Villani M, Lazzarini L, White JC, Marmiroli N. 2020b. The fate of CdS quantum dots in plants as revealed by extended X-ray absorption fine structure (EXAFS) analysis. Environ Sci: nano. 7(4):1150–1162. doi: 10.1039/C9EN01433K.
  • Marmiroli M, Mussi F, Pagano L, Imperiale D, Lencioni G, Villani M, Zappettini A, White JC, Marmiroli N. 2020a. Cadmium sulfide quantum dots impact Arabidopsis thaliana physiology and morphology. Chemosphere. 240:124856. doi: 10.1016/j.chemosphere.2019.124856.
  • Nayan R, Rawat M, Negi B, Pande A, Arora S. 2016. Zinc sulfide nanoparticle mediated alterations in growth and anti-oxidant status of Brassica juncea. Biologia. 71(8):896–902. doi: 10.1515/biolog-2016-0107.
  • Paesano L, Perotti A, Buschini A, Carubbi C, Marmiroli M, Maestri E, Iannotta S, Marmiroli N. 2016. Markers for toxicity to HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria. Toxicology. 374:18–28. doi: 10.1016/j.tox.2016.11.012.
  • Pagano L, Marmiroli M, Villani M, Magnani J, Rossi R, Zappettini A, White JC, Marmiroli N. 2022. Engineered nanomaterial exposure affects organelle genetic material replication in Arabidopsis thaliana. ACS Nano. 16(2):2249–2260. doi: 10.1021/acsnano.1c08367.
  • Qadir S, Jamshieed S, Rasool S, Ashraf M, Akram NA, Ahmad P. 2014. Modulation of plant growth and metabolism in cadmium-enriched environments. Rev Environ Contam Toxicol. 229:51–88. doi: 10.1007/978-3-319-03777-6_4.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 26(9-10):1231–1237. doi: 10.1016/S0891-5849(98)00315-3.
  • Rossi R, Ruotolo R, De Giorgio G, Marmiroli M, Villani M, Zappettini A, Marmiroli N. 2022. Cadmium sulfide quantum dots adversely affect gametogenesis in Saccharomyces cerevisiae. Nanomaterials (Basel). 12(13):2208. doi: 10.3390/nano12132208.
  • Salem NM, Al-Banna L, Abdeen AO, Ibrahim QI, Awwad AM. 2016. Sulfur nanoparticles improves root and shoot growth of tomato. JAS. 8(4):179. doi: 10.5539/jas.v8n4p179.
  • Samreen T, Shah HU, Ullah S, Javid M, Humaira. 2017. Zinc effect on growth rate, chlorophyll, protein and mineral contents of hydroponically grown mungbeans plant (Vigna radiata). Arab. J. Chem. 10(2): s 1802–S1807. doi: 10.1016/j.arabjc.2013.07.005.
  • Sánchez-Moreno C, Larrauri JA, Saura-Calixto F. 1998. A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric. 76(2):270–276. doi: 10.1002/(SICI)1097-0010(199802)76:2≤270::AID-JSFA945≥3.0.CO;2-9.
  • Sbartai H, Sbartai I, Djebar MR, Berrebbah H. 2017. Phytoremediation of contaminated soils by heavy metals – “case tomato”. Acta Hortic. 1159(1159):95–100. doi: 10.17660/ActaHortic.2017.1159.15.
  • Shu DF, Wang LY, Duan M, Deng YS, Meng QW. 2011. Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress. Plant Physiol Biochem. 49(10):1228–1237. doi: 10.1016/j.plaphy.2011.04.005.
  • Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Alnaggar AEM, Soliman AM, El-Dougdoug NK. 2021. Ameliorating the adverse effects of tomato mosaic tobamovirus infecting tomato plants in Egypt by boosting immunity in tomato plants using zinc oxide nanoparticles. Molecules. 26(5):1337. doi: 10.3390/molecules26051337.
  • Szopiński M, Sitko K, Gieroń Ż, Rusinowski S, Corso M, Hermans C, Verbruggen N, Małkowski E. 2019. Toxic effects of Cd and Zn on the photosynthetic apparatus of the Arabidopsis helleri and Arabidopsis arenosa pseudo-metallophytes. Front Plant Sci. 10:748. doi: 10.3389/fpls.2019.00748.
  • Thapa M, Singh M, Ghosh CK, Biswas PK, Mukherjee A. 2019. Zinc sulphide nanoparticle (nZnS): A novel nano-modulator for plant growth. Plant Physiol Biochem. 142:73–83. doi: 10.1016/j.plaphy.2019.06.031.
  • Thévenod F, Fels J, Lee WK, Zarbock R. 2019. Channels, transporters and receptors for cadmium and cadmium complexes in eukaryotic cells: myths and facts. Biometals. 32(3):469–489. doi: 10.1007/s10534-019-00176-6.
  • Tomato Genome Consortium. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 485:635–641. doi: 10.1038/nature11119.
  • Wang Q, Ma X, Zhang W, Pei H, Chen Y. 2012. The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics. 4(10):1105–1112. doi: 10.1039/c2mt20149f.
  • Zhang T, Xiao J, Zhao Y, Zhang Y, Jie Y, Shen D, Yue C, Huang J, Hua Y, Zhou T. 2021. Comparative physiological and transcriptomic analyses reveal ascorbate and glutathione coregulation of cadmium toxicity resistance in wheat genotypes. BMC Plant Biol. 21(1):459. doi: 10.1186/s12870-021-03225-w.
  • Zhao H, Guan J, Liang Q, Zhang X, Hu H, Zhang J. 2021. Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Sci Rep. 11(1):9913. doi: 10.1038/s41598-021-89322-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.