176
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sorption of cadmium, chromium, lead, and vanadium from artificial wetlands using Lemna aequinoctialis

, &

References

  • Adesiyan IM, Bisi-Johnson M, Aladesanmi OT, Okoh AI, Ogunfowokan AO. 2018. Concentrations and human health risk of heavy metals in rivers in southwest Nigeria. J Health Pollut. 8(19):180907. doi: 10.5696/2156-9614-8.19.180907.
  • Ahmad H, Tsafe AI, Zuru AA, Shehu RA, Atiku FA, Itodo AU. 2010. Physicochemical and heavy metals values of Nigerian crude oil samples. Int J Nat Appl Sci. 6(1):10–15.
  • Ahmad I, Gul I, Irum S, Manzoor M, Arshad M. 2023. Accumulation of heavy metals in wild plants collected from the industrial sites-potential for phytoremediation. Int J Environ Sci Technol. 20(5):5441–5452. doi: 10.1007/s13762-022-04340-3.
  • ASTM. 2017. Standard guide for chemical analysis of metals and metal bearing ores by flame atomic absorption spectrophotometry. American Society for Testing and Materials International. doi: 10.1520/E1024-97.https://www.astm.org/e1024-97.html.
  • Baek G, Saeed M, Choi HK. 2021. Duckweeds: their utilization, metabolites and cultivation. Appl Biol Chem. 64(1):73. doi: 10.1186/s13765-021-00644-z.
  • Benefield LD, Randall CW. 1980. Biological process design for wastewater treatment. New Jersey: Prentice-Hall. p. 86–92.
  • Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M, Mohammad A. 2016. Phytoremediation potential of Lemna minor L. for heavy metals. Int J Phytoremediation. 18(1):25–32. doi: 10.1080/15226514.2015.1058331.
  • Bokhari SH, Mahmood-Ul-Hassan M, Ahmad M. 2019. Phytoextraction of Ni, Pb and, Cd by duckweeds. Int J Phytoremediation. 21(8):799–806. doi: 10.1080/15226514.2019.1566882.
  • Brăhaița ID, Malschi D, Popița EG. 2015. Phytoremediation study of water polluted with heavy metals using floating macrophytes: Lemna minor and Pistia stratiotes. AES Bioflux. 7(2):155–162.
  • Chakraborty R, Karmakar S, Mukherjee S, Kumar S. 2014. Kinetic evaluation of chromium (VI) sorption by water lettuce (Pistia). Water Sci Technol. 69(1):195–201. doi: 10.2166/wst.2013.667.
  • Chaudhary E, Sharma P. 2019. Chromium and cadmium removal from wastewater using duckweed – Lemna gibba L. and ultrastructural deformation due to metal toxicity. Int J Phytoremediation. 21(3):279–286. doi: 10.1080/15226514.2018.1522614.
  • Chen G, Feng T, Li Z, Chen Z, Chen Y, Wang H, Xiang Y. 2017. Influence of sulfur on the arsenic phytoremediation using Vallisneria natans (Lour.). Hara. Bull Environ Contam Toxicol. 99(3):411–414. doi: 10.1007/s00128-017-2135-1.
  • Chen L, Fang Y, Jin Y, Chen Q, Zhao Y, Xiao Y, Zhao H. 2013. Biosorption of Pb2+ by dried powder of duckweed (Lemna aequinoctialis). Chin J Appl Environ Biol. 19(6):1046–1052. doi: 10.3724/SP.J.1145.2013.01046.
  • Datko AH, Mudd SH, Giovanelli J. 1980. Lemna paucicostata Hegelm. 6746: life cycle and characterization of the colony types in a population. Plant Physiol. 65(5):913–923. doi: 10.1104/pp.65.5.913.
  • Ekperusi AO, Nwachukwu EO, Sikoki FD. 2020. Assessing and modelling the efficacy of Lemna aequinoctialis for the phytoremediation of petroleum hydrocarbons in crude oil-contaminated wetlands. Sci Rep. 10(1):8489. doi.: doi: 10.1038/s41598-020-65389-z.
  • Ekperusi OA, Aigbodion IF, Iloba BN, Okorefe S. 2017. Assessment and bioremediation of heavy metals from crude oil contaminated soil by earthworms. Ethiop J Env Stud Manage. 9(2):1036–1046. doi: 10.4314/ejesm.v9i2.9S.
  • Ekperusi OA, Sikoki FD, Nwachukwu EO. 2019. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: state and future perspective. Chemosphere. 223:285–309. doi: 10.1016/j.chemosphere.2019.02.025.
  • Galal TM, Farahat EA. 2015. The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt. Environ Monit Assess. 187(11):701–711. doi: 10.1007/s10661-015-4941-4.
  • Galal TM, Gharib FA, Ghazi SM, Mansour KH. 2017. Phytostabilization of heavy metals by the emergent macrophyte Vossia cuspidata (Roxb.) Griff.: a phytoremediation approach. Int J Phytoremediation. 19(11):992–999. doi: 10.1080/15226514.2017.1303816.
  • Hillman WS, Culley DD. 1978. The use of duckweed. Am Sci. 66:442–451.
  • ITRC. 2003. Technical and regulatory guidance document for constructed treatment wetlands (WTLND-1). Interstate Technology and Regulatory Council. Dec. p. 199.
  • Jasrotia S, Kansal A, Mehra A. 2017. Performance of aquatic plant species for phytoremediation of arsenic-contaminated water. Appl Water Sci. 7(2):889–896. doi: 10.1007/s13201-015-0300-4.
  • Kishchenko O, Stepanenko A, Straub T, Zhou Y, Neuhäuser B, Borisjuk N. 2023. Ammonium uptake, mediated by ammonium transporters, mitigates manganese toxicity in duckweed, Spirodela polyrhiza. Plants (Basel). 12(1):208. doi: 10.3390/plants12010208.
  • Landis WG, Sofield RM, Yu MH. 2011. Introduction to environmental toxicology: molecular structures to ecological landscapes. 4th ed. Boca Raton, FL: CRC Press. p. 117–162.
  • Landolt E. 1980. Key to the determination of taxa within the family of Lemnaceae. Veröffentlichungen des Geobotanischen Institutes der EidgenössischeTechnische Hochschule. Stiftung Rubel Zürich. 70(1):13–21.
  • Landolt E. 1986. The family of Lemnaceae a monographic study. Vol. 1, Biosystematic investigations in the family of duckweeds (Lemnaceae). Zurich: Veroffentlichungen des Geobotanischen, Instituts der ETH, Stiftung Rubel.
  • Lesage E, Rousseau DPL, Meers E, Tack FMG, De Pauw N. 2007. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Sci Total Environ. 380(1–3):102–115. doi: 10.1016/j.scitotenv.2006.10.055.
  • Liu Y, Xu H, Yu C, Zhou G. 2021. Multifaceted roles of duckweed in aquatic phytoremediation and bioproducts synthesis. GCB Bioenergy. 13(1):70–82. doi: 10.1111/gcbb.12747.
  • Mbagwu IG, Adeniji HA. 1988. The nutritional content of duckweed (Lemna paucicostata Hegelm) in the Kainji Lake area, Nigeria. Aquat Bot. 29(4):357–366. doi: 10.1016/0304-3770(88)90079-4.
  • Megateli S, Dosnon-Olette R, Trotel-Aziz P, Geffard A, Semsari S, Couderchet M. 2013. Simultaneous effects of two fungicides (copper and dimethomorph) on their phytoremediation using Lemna minor. Ecotoxicology. 22(4):683–692. doi: 10.1007/s10646-013-1060-2.
  • Megateli S, Semsari S, Couderchet M. 2009. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicol Environ Saf. 72(6):1774–1780. doi: 10.1016/j.ecoenv.2009.05.004.
  • Miretzky P, Saralegui A, Fernandez CA. 2004. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere. 57(8):997–1005. doi: 10.1016/j.chemosphere.2004.07.024.
  • Mishra VK, Tripathi BD. 2008. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol. 99(15):7091–7097. doi: 10.1016/j.biortech.2008.01.002.
  • Mkandawire M, Dudel EG. 2007. Are Lemna spp effective phytoremediation agents? Bioremediation. Biodivers Bioavailab. 1(1):56–71.
  • Mohedano RA, Costa RHR, Tavares FA, Filho PB. 2012. High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds. Bioresour Technol. 112:98–104. doi: 10.1016/j.biortech.2012.02.083.
  • Muradov N, Taha M, Miranda AF, Kadali K, Gujar A, Rochfort S, Stevenson T, Ball AS, Mouradov A. 2014. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production. Biotechnol Biofuels. 7(1):30. doi: 10.1186/1754-6834-7-30.
  • Nguyen HL, Leermakers M, Osan J, Torok S, Baeyens W. 2005. Heavy metals in Lake Balaton: watercolumn, suspended matter, sediment and biota. Sci Total Environ. 340(1–3):213–230. doi: 10.1016/j.scitotenv.2004.07.032.
  • Oporto C, Arce O, Van den Broeck E, Van der Bruggen B, Vandecasteele C. 2006. Experimental study and modelling of Cr (VI) removal from wastewater using Lemna minor. Water Res. 40(7):1458–1464. doi: 10.1016/j.watres.2006.01.037.
  • Ortúzar M, Esterhuizen M, Olicón-Hernández DR, González-López J, Aranda E. 2022. Pharmaceutical pollution in aquatic environments: a concise review of environmental impacts and bioremediation systems. Front Microbiol. 13:869332. doi: 10.3389/fmicb.2022.869332.
  • Paisio CE, Fernandez M, Gonzalez PS, Talano MA, Medina MI, Agostini E. 2018. Simultaneous phytoremediation of chromium and phenol by Lemna minuta Kunth: a promising biotechnological tool. Int J Environ Sci Technol. 15(1):37–48. doi: 10.1007/s13762-017-1368-1.
  • Pilon-Smits E. 2005. Phytoremediation. Annu Rev Plant Biol. 56:15–39. doi: 10.1146/annurev.arplant.56.032604.144214.
  • Preetha SS, Kaladevi V. 2014. Phytoremediation of heavy metals using aquatic macrophytes. World J Environ Biosci. 3(1):34–41.
  • Rahmani GNH, Sternberg SPK. 1999. Bioremoval of lead from water using Lemna minor. Bioresour Technol. 70(3):225–230. doi: 10.1016/S0960-8524(99)00050-4.
  • Roberts MJ, Long SP, Tieszen LL, Beadle CL. 1985. Chapter 1 – Measurement of plant biomass and net primary production. In: Techniques in bioproductivity and photosynthesis. Pergamon International Library of Science, Technology, Engineering and Social Studies. 2nd ed. p. 1–19. doi: 10.1016/B978-0-08-031999-5.50011-X.
  • Sarma H. 2011. Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol. 4(2):118–138. doi: 10.3923/jest.2011.118.138.
  • Shuvaeva OV, Belchenko LA, Romanova TE. 2013. Studies on cadmium accumulation by some selected floating macrophytes. Int J Phytoremediation. 15(10):979–990. doi: 10.1080/15226514.2012.751353.
  • Sobrino AS, Miranda MG, Alvarez C, Quiroz A. 2010. Bio-accumulation and toxicity of lead (Pb) in Lemna gibba L (duckweed). J Environ Sci Health A Tox Hazard Subst Environ Eng. 45(1):107–110. doi: 10.1080/10934520903389267.
  • Sukumaran D. 2013. Phytoremediation of heavy metals from industrial effluent using constructed wetland technology. AEES. 1(5):92–97. doi: 10.12691/aees-1-5-4.
  • Sun H, Wang Z, Gao P, Liu P. 2013. Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta Physiol Plant. 35(2):355–364. doi: 10.1007/s11738-012-1078-8.
  • Tang J, Chen C, Chen L, Daroch M, Cui Y. 2017. Effects of pH, initial Pb2+ concentration, and polyculture on lead remediation by three duckweed species. Environ Sci Pollut Res Int. 24(30):23864–23871. doi: 10.1007/s11356-017-0004-4.
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. 2012. Heavy metals toxicity and the environment. Exp Suppl. 101:133–164. doi: 10.1007/978-3-7643-8340-4_6.
  • Tkalec M, Cifrek ZV, Regula I. 1998. The effect of oil industry ‘high density brines’ on duckweed Lemna minor L. Chemosphere. 37(13):2703–2715. doi: 10.1016/S0045-6535(98)00156-8.
  • Tunca EÜ, Ölmez TT, Özkan AD, Altındağ A, Tunca E, Tekinay T. 2016. Correlations in metal release profiles following sorption by Lemna minor. Int J Phytoremediation. 18(8):785–793. doi: 10.1080/15226514.2015.1131241.
  • Üçüncü E, Tunca E, Fikirdeşici S, Altındağ A. 2013. Decrease and increase profile of Cu, Cr and Pb during stable phase of removal by duckweed (Lemna minor L.). Int J Phytoremediation. 15(4):376–384. doi: 10.1080/15226514.2012.702808.
  • Üçüncü E, Tunca E, Fikirdeşici S, Özkan AD, Altındağ A. 2013. Phytoremediation of Cu, Cr and Pb Mixtures by Lemna minor. Bull Environ Contam Toxicol. 91(5):600–604. doi: 10.1007/s00128-013-1107-3.
  • Van Epps A. 2006. Phytoremediation of petroleum hydrocarbons, solid waste and emergency response. Office of Superfund Remediation and Technology Innovation. Washington, DC: United States Environmental Protection Agency.
  • Vollenweider RA. 1974. A manual on methods for measuring primary production in aquatic environments. IBP Handbook No. 12 International Biological Programme. 2nd ed. Oxford: Blackwell Scientific Publications. p. 225.
  • Walsh É, Paolacci S, Burnell G, Jansen MAK. 2020. The importance of the calcium-to-magnesium ratio for phytoremediation of dairy industry wastewater using the aquatic plant Lemna minor L. Int J Phytoremediation. 22(7):694–702. doi: 10.1080/15226514.2019.1707478.
  • Xing W, Wu H, Hao B, Huang W, Liu G. 2013. Bioaccumulation of heavy metals by submerged macrophytes: looking for hyperaccumulators in eutrophic lakes. Environ Sci Technol. 47(9):4695–4703. doi: 10.1021/es303923w.
  • Zhou Y, Bai T, Kishchenko OM. 2019. Potential of Lemnoideae species for phytoremediation of fresh water with elevated manganese concentration. Innov Biosyst Bioeng. 3(4):232–238. doi: 10.20535/ibb.2019.3.4.183207.
  • Zhou Y, Kishchenko O, Stepanenko A, Chen G, Wang W, Zhou J, Pan C, Borisjuk N. 2021. The dynamics of NO3− and NH4+ uptake in duckweed are coordinated with the expression of major nitrogen assimilation genes. Plants (Basel). 11(1):11. doi: 10.3390/plants11010011.
  • Zhou Y, Stepanenko A, Kishchenko O, Xu J, Borisjuk N. 2023. Duckweeds for phytoremediation of polluted water. Plants (Basel). 12(3):589. doi: 10.3390/plants12030589.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.