185
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring the potential of bacterial-augmented floating treatment wetlands for the remediation of detergent-contaminated water

, , ORCID Icon, , , , , , , , & ORCID Icon show all

References

  • Abhilash P, Powell JR, Singh HB, Singh BK. 2012. Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol. 30(8):416–420. doi: 10.1016/j.tibtech.2012.04.004.
  • Afzal M, Arslan M, Müller JA, Shabir G, Islam E, Tahseen R, Anwar-Ul-Haq M, Hashmat AJ, Iqbal S, Khan QM. 2019a. Floating treatment wetlands as a suitable option for large-scale wastewater treatment. Nat Sustain. 2(9):863–871. doi: 10.1038/s41893-019-0350-y.
  • Afzal M, Khan QM, Sessitsch A. 2014. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere. 117:232–242. doi: 10.1016/j.chemosphere.2014.06.078.
  • Afzal M, Rehman K, Shabir G, Tahseen R, Ijaz A, Hashmat AJ, Brix H. 2019b. Large-scale remediation of oil-contaminated water using floating treatment wetlands. Npj Clean Water. 2(1):3. doi: 10.1038/s41545-018-0025-7.
  • Ali A, Hussain MM, Niazi NK, Younas F, Farooqi ZUR, Zeeshan N, Javed MT, Shahid M, Bibi I. 2023. A comparison of technologies for remediation of arsenic-bearing water: the significance of constructed wetlands. In. Niazi NK, Bibi I, Aftab T, editors. Global arsenic hazard: ecotoxicology and remediation Cham: Springer International Publishing. p. 223–245.
  • Bibi I, Hussain K, Amen R, Hasan IMU, Shahid M, Bashir S, Niazi NK, Mehmood T, Asghar HN, Nawaz MF. 2021. The potential of microbes and sulfate in reducing arsenic phytoaccumulation by maize (Zea mays L.) plants. Environ Geochem Health. 43:1–15.
  • Bibi I, Niazi NK, Choppala G, Burton ED. 2018. Chromium (VI) removal by siderite (FeCO3) in anoxic aqueous solutions: an X-ray absorption spectroscopy investigation. Sci Total Environ. 640:1424–1431. doi: 10.1016/j.scitotenv.2018.06.003.
  • Billore S, Sharma J. 2009. Treatment performance of artificial floating reed beds in an experimental mesocosm to improve the water quality of river Kshipra. Water Sci Technol. 60(11):2851–2859. doi: 10.2166/wst.2009.731.
  • Borne KE, Fassman EA, Tanner CC. 2013. Floating treatment wetland retrofit to improve stormwater pond performance for suspended solids, copper and zinc. Ecol Eng. 54:173–182. doi: 10.1016/j.ecoleng.2013.01.031.
  • Chen Z, Cuervo DP, Müller JA, Wiessner A, Köser H, Vymazal J, Kästner M, Kuschk P. 2016. Hydroponic root mats for wastewater treatment—a review. Environ Sci Pollut Res. 23:15911–15928. doi: 10.1007/s11356-016-6801-3.
  • Colares GS, Dell’Osbel N, Wiesel PG, Oliveira GA, Lemos PHZ, da Silva FP, Lutterbeck CA, Kist LT, Machado ÊL. 2020. Floating treatment wetlands: a review and bibliometric analysis. Sci Total Environ. 714:136776. doi: 10.1016/j.scitotenv.2020.136776.
  • Dehghani MH, Mahvi AH, Najafpoor AA, Azam K. 2007. Investigating the potential of using acoustic frequency on the degradation of linear alkylbenzen sulfonates from aqueous solution. J Zhejiang Univ - Sci A. 8(9):1462–1468. doi: 10.1631/jzus.2007.A1462.
  • Dereszewska A, Cytawa S, Tomczak-Wandzel R, Medrzycka K. 2015. The effect of anionic surfactant concentration on activated sludge condition and phosphate release in biological treatment plant. Pol J Environ Stud. 24(1):83–91. doi: 10.15244/pjoes/28640.
  • Dubey DV, Singh N, Singh S, Shukla A, Pandey A. 2012. Effect of detergent use on water quality in Rewa City of MP (India). IOSRJAC. 1(4):28–30. doi: 10.9790/5736-0142830.
  • Fan B, Tan Y, Wang J, Zhang B, Peng Y, Yuan C, Guan C, Gao X, Cui S. 2021. Application of magnetic composites in removal of tetracycline through adsorption and advanced oxidation processes (AOPs): a review. Processes. 9(9):1644. doi: 10.3390/pr9091644.
  • Fatima K, Afzal M, Imran A, Khan QM. 2015. Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil. Bullet Environ Contamin Toxicol. 94(3):314–320. doi: 10.1007/s00128-015-1489-5.
  • Fatima K, Imran A, Amin I, Khan Q, Afzal M. 2016. Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil. Environ Sci Pollut Res. 23:6188–6196. doi: 10.1007/s11356-015-5845-0.
  • Federation WE, Association A. 2005. Standard methods for the examination of water and wastewater. Washington, DC, USA:American Public Health Association (APHA)
  • Ghoochani M, Shekoohiyan S, Mahvi A, Haibati B, Norouzi M. 2011. Determination of detergent in Tehran ground and surface water. American-Eurasian J Agric Environ Sci. 10(3):464–469.
  • Hansen AT, Dolph CL, Foufoula-Georgiou E, Finlay JC. 2018. Contribution of wetlands to nitrate removal at the watershed scale. Nature Geosci. 11(2):127–132. doi: 10.1038/s41561-017-0056-6.
  • Hu Z, Li D, Guan D. 2020. Water quality retrieval and algae inhibition from eutrophic freshwaters with iron-rich substrate based ecological floating beds treatment. Sci Total Environ. 712:135584. doi: 10.1016/j.scitotenv.2019.135584.
  • Hussain Z, Arslan M, Malik MH, Mohsin M, Iqbal S, Afzal M. 2018. Treatment of the textile industry effluent in a pilot-scale vertical flow constructed wetland system augmented with bacterial endophytes. Sci Total Environ. 645:966–973. doi: 10.1016/j.scitotenv.2018.07.163.
  • Hussain Z, Arslan M, Shabir G, Malik MH, Mohsin M, Iqbal S, Afzal M. 2019. Remediation of textile bleaching effluent by bacterial augmented horizontal flow and vertical flow constructed wetlands: a comparison at pilot scale. Sci Total Environ. 685:370–379. doi: 10.1016/j.scitotenv.2019.05.414.
  • Ijaz A, Imran A, Anwar Ul Haq M, Khan QM, Afzal M. 2016. Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant Soil. 405(1-2):179–195. doi: 10.1007/s11104-015-2606-2.
  • Ijaz A, Shabir G, Khan QM, Afzal M. 2015. Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Ecol Eng. 84:58–66. doi: 10.1016/j.ecoleng.2015.07.025.
  • Jakovljević VD, Vrvić MM. 2017. The Potential Application of Selected Fungi Strains in Removal of Commercial Detergents and Biotechnology Application and Characterization of Surfactants: IntechOpen London, UK. p. 233.
  • Jurado E, Fernández-Serrano M, Núñez-Olea J, Luzón G, Lechuga M. 2006. Simplified spectrophotometric method using methylene blue for determining anionic surfactants: applications to the study of primary biodegradation in aerobic screening tests. Chemosphere. 65(2):278–285. doi: 10.1016/j.chemosphere.2006.02.044.
  • Kabra AN, Khandare RV, Govindwar SP. 2013. Development of a bioreactor for remediation of textile effluent and dye mixture: a plant–bacterial synergistic strategy. Water Res. 47(3):1035–1048. doi: 10.1016/j.watres.2012.11.007.
  • Karigar CS, Rao SS. 2011. Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res. doi: 10.4061/2011/805187.
  • Katam K, Shimizu T, Bhattacharyya D, Soda S. 2019. Nutrient, linear alkyl benzene sulfonate, and caffeine removal from synthetic wastewater with an algal-bacterial culture and an activated sludge culture in batch mode. Japanese J Wat Treat Biol. 55(4):79–87. doi: 10.2521/jswtb.55.79.
  • Keizer-Vlek HE, Verdonschot PF, Verdonschot RC, Dekkers D. 2014. The contribution of plant uptake to nutrient removal by floating treatment wetlands. Ecol Eng. 73:684–690. doi: 10.1016/j.ecoleng.2014.09.081.
  • Khan MS, Zaidi A, Wani PA, Oves M. 2009. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett. 7(1):1–19. doi: 10.1007/s10311-008-0155-0.
  • Khan MU, Sessitsch A, Harris M, Fatima K, Imran A, Arslan M, Shabir G, Khan QM, Afzal M. 2014. Cr-resistant rhizo-and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Front Plant Sci. 5:755. doi: 10.3389/fpls.2014.00755.
  • Khan S, Afzal M, Iqbal S, Khan QM. 2013. Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere. 90(4):1317–1332. doi: 10.1016/j.chemosphere.2012.09.045.
  • Khandare R, Kabra A, Awate A, Govindwar S. 2013. Synergistic degradation of diazo dye direct red 5B by Portulaca grandiflora and Pseudomonas putida. Int J Environ Sci Technol. 10(5):1039–1050. doi: 10.1007/s13762-013-0244-x.
  • Lavorante AF, Morales-Rubio Á, de la Guardia M, Reis BF. 2005. Micro-pumping flow system for spectrophotometric determination of anionic surfactants in water. Anal Bioanal Chem. 381(6):1305–1309. doi: 10.1007/s00216-004-3029-8.
  • León VM, Gómez-Parra A, González-Mazo E. 2004. Biodegradation of linear alkylbenzene sulfonates and their degradation intermediates in seawater. Environ Sci Technol. 38(8):2359–2367. doi: 10.1021/es034813+.
  • Ma Y, Rajkumar M, Oliveira RS, Zhang C, Freitas H. 2019. Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J Hazard Mater. 379:120813. doi: 10.1016/j.jhazmat.2019.120813.
  • Masood Ul Hasan I, Javed H Hussain M M Shakoor M B, Bibi, I, Shahid, M, Xu, N, Wei Q, Qiao, J, Niazi, N K, Farwa.2023. Biochar/nano-zerovalent zinc-based materials for arsenic removal from contaminated water. Int J Phytoremediation., 25(9):1155–1164. doi: 10.1080/15226514.2022.2140778.
  • Mazumder D, Mukherjee S. 2011. Treatment of automobile service station wastewater by coagulation and activated sludge process. IJESD. 2(1):64–69. doi: 10.7763/IJESD.2011.V2.98.
  • Mondal MH, Malik S, Roy A, Saha R, Saha B. 2015. Modernization of surfactant chemistry in the age of gemini and bio-surfactants: a review. RSC Adv. 5(112):92707–92718. doi: 10.1039/C5RA18462B.
  • Mousavi SA, Khodadoost F. 2019. Effects of detergents on natural ecosystems and wastewater treatment processes: a review. Environ Sci Pollut Res Int. 26(26):26439–26448. doi: 10.1007/s11356-019-05802-x.
  • Mukherjee B, Nivedita M, Mukherjee D. 2010. Plankton diversity and dynamics in a polluted eutrophic lake, Ranchi. J Environ Biol. 31(5):827.
  • Natasha, Bibi I, Niazi NK, Shahid M, Ali F, Ul Hasan IM, Rahman MM, Younas F, Hussain MM, Mehmood T, Shaheen SM. 2022. Distribution and ecological risk assessment of trace elements in the paddy soil-rice ecosystem of Punjab, Pakistan. Environ Pollut. 307:119492. doi: 10.1016/j.envpol.2022.119492.
  • Nawaz N, Ali S, Shabir G, Rizwan M, Shakoor MB, Shahid MJ, Afzal M, Arslan M, Hashem A, Abd_Allah EF, et al. 2020. Bacterial augmented floating treatment wetlands for efficient treatment of synthetic textile dye wastewater. Sustainability. 12(9):3731. doi: 10.3390/su12093731.
  • Nrcs U. 2009. National Engineering Handbook-Part 651-Agricultural Waste Management Field Handbook. Washington, DC: United States Department of Agriculture
  • Ogundiran M, Fawole O, Adewoye S, Ayandiran T. 2009. Pathologic lesions in the gills of Clarias gariepinus exposed to sublethal concentrations of soap and detergent effluents. J Cell Animal Biol. 3(5):78–82.
  • Ojo OA, Oso BA. 2009. Biodegradation of synthetic detergents in wastewater. Afr J Biotechnol. 8(6):1090–1109.
  • Park JB, Sukias JP, Tanner CC. 2019. Floating treatment wetlands supplemented with aeration and biofilm attachment surfaces for efficient domestic wastewater treatment. Ecol Eng. 139:105582. doi: 10.1016/j.ecoleng.2019.105582.
  • Peng Y, Tang H, Yao B, Gao X, Yang X, Zhou Y. 2021. Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A review. J Chem Eng. 414:128800. doi: 10.1016/j.cej.2021.128800.
  • Peressutti SR, Olivera N, Babay P, Costagliola M, Alvarez H. 2008. Degradation of linear alkylbenzene sulfonate by a bacterial consortium isolated from the aquatic environment of Argentina. J Appl Microbiol. 105(2):476–484. doi: 10.1111/j.1365-2672.2008.03771.x.
  • Pilon-Smits E. 2005. Phytoremediation. Annu Rev Plant Biol. 56(1):15–39. doi: 10.1146/annurev.arplant.56.032604.144214.
  • Rashed MN. 2013. Adsorption technique for the removal of organic pollutants from water and wastewater. Organic pollutants-monitoring, risk and treatment. 7:167–194.
  • Rasheed T, Bilal M, Nabeel F, Adeel M, Iqbal HM. 2019. Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ Int. 122:52–66. doi: 10.1016/j.envint.2018.11.038.
  • Rehman K, Imran A, Amin I, Afzal M. 2018. Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. J Hazard Mater. 349:242–251. doi: 10.1016/j.jhazmat.2018.02.013.
  • Rehman K, Imran A, Amin I, Afzal M. 2019. Enhancement of oil field-produced wastewater remediation by bacterially-augmented floating treatment wetlands. Chemosphere. 217:576–583. doi: 10.1016/j.chemosphere.2018.11.041.
  • Saleem H, Rehman K, Arslan M, Afzal M. 2018. Enhanced degradation of phenol in floating treatment wetlands by plant-bacterial synergism. Int J Phytoremediation. 20(7):692–698. doi: 10.1080/15226514.2017.1413334.
  • Sawyer SF. 2009. Analysis of variance: the fundamental concepts. J ManManip Ther. 17(2):27E–38E. doi: 10.1179/mt.2009.17.2.27E.
  • Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, Van Elsas JD, Faure D, Reiter B, Glick BR, et al. 2005. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol. 55(Pt 3):1187–1192. doi: 10.1099/ijs.0.63149-0.
  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M. 2013. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem. 60(100):182–194. doi: 10.1016/j.soilbio.2013.01.012.
  • Shafqat A, Shaılendra Y, Tamheed F. 2012. Spectrophotometric determination of anionic detergents in the river Sai at Jaunpur. Paripex-Indian J Res. 1(12):72–73.
  • Shahid MJ, Arslan M, Siddique M, Ali S, Tahseen R, Afzal M. 2019. Potentialities of floating wetlands for the treatment of polluted water of river Ravi, Pakistan. Ecol Eng. 133:167–176. doi: 10.1016/j.ecoleng.2019.04.022.
  • Shehzadi M, Afzal M, Khan MU, Islam E, Mobin A, Anwar S, Khan QM. 2014. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res. 58:152–159. doi: 10.1016/j.watres.2014.03.064.
  • Shehzadi M, Fatima K, Imran A, Mirza M, Khan Q, Afzal M. 2016. Ecology of bacterial endophytes associated with wetland plants growing in textile effluent for pollutant-degradation and plant growth-promotion potentials. Plant Biosyst. 150(6):1261–1270. doi: 10.1080/11263504.2015.1022238.
  • Skrzypiecbcef K, Gajewskaad MH. 2017. The use of constructed wetlands for the treatment of industrial wastewater. JWater Land Dev. 34(1):233–240. doi: 10.1515/jwld-2017-0058.
  • Song J, Li Q, Dzakpasu M, Wang XC, Chang N. 2021. Integrating stereo-elastic packing into ecological floating bed for enhanced denitrification in landscape water. Bioresour Technol. 325:124721. doi: 10.1016/j.biortech.2021.124721.
  • Steel RGD, Torrie JH. 1980. Principles and procedures of statistics, a biometrical approach. Tokyo: McGraw-Hill Kogakusha, Ltd.
  • Sutton S. 2011. Measurement of microbial cells by optical density. J Valid Technol. 17(1):46–49.
  • Tara N, Afzal M, Ansari TM, Tahseen R, Iqbal S, Khan QM. 2014. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil. Int J Phytoremediation. 16(7–12):1268–1277. doi: 10.1080/15226514.2013.828013.
  • Tara N, Arslan M, Hussain Z, Iqbal M, Khan QM, Afzal M. 2019. On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. J Cleaner Prod. 217:541–548. doi: 10.1016/j.jclepro.2019.01.258.
  • Yaseen Z M, Zigale T T, D, R K, Salih S Q, Awasthi S, Tung, T M, Al-Ansari N, Bhagat, Suraj Kumar, Tiyasha,. 2019. Laundry wastewater treatment using a combination of sand filter, bio-char and teff straw media. Sci Rep 9 (1): 18709. doi: 10.1038/s41598-019-54888-3.
  • Yasin M, Tauseef M, Zafar Z, Rahman M, Islam E, Iqbal S, Afzal M. 2021. Plant-microbe synergism in floating treatment wetlands for the enhanced removal of sodium dodecyl sulphate from water. Sustainability. 13(5):2883. doi: 10.3390/su13052883.
  • Yeh N, Yeh P, Chang Y-H. 2015. Artificial floating islands for environmental improvement. Renewable Sustainable Energy Rev. 47:616–622. doi: 10.1016/j.rser.2015.03.090.
  • Younas F, Bibi I, Afzal M, Niazi NK, Aslam Z. 2022a. Elucidating the potential of vertical flow-constructed wetlands vegetated with different wetland plant species for the remediation of chromium-contaminated water. Sustainability. 14(9):5230. doi: 10.3390/su14095230.
  • Younas F, Niazi NK, Bibi I, Afzal M, Hussain K, Shahid M, Aslam Z, Bashir S, Hussain MM, Bundschuh J. 2022b. Constructed wetlands as a sustainable technology for wastewater treatment with emphasis on chromium-rich tannery wastewater. J Hazard Mater. 422:126926. doi: 10.1016/j.jhazmat.2021.126926.
  • Yousaf S, Ripka K, Reichenauer T, Andria V, Afzal M, Sessitsch A. 2010. Hydrocarbon degradation and plant colonization by selected bacterial strains isolated from Italian ryegrass and birdsfoot trefoil. J Appl Microbiol. 109(4):1389–1401. doi: 10.1111/j.1365-2672.2010.04768.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.