68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of subsoil and soil volume on the accumulation of nickel by Odontarrhena corsica grown on a serpentine soil

ORCID Icon & ORCID Icon

References

  • Baker AJM. 1981. Accumulators and excluders‐strategies in the response of plants to heavy metals. J Plant Nutr. 3(1–4):643–654. doi:10.1080/01904168109362867.
  • Baker AJM. 1987. Metal tolerance. New Phytol. 106(s1):93–111. doi:10.1111/j.1469-8137.1987.tb04685.x.
  • Bani A, Echevarria G, Sulçe S, Morel JL. 2015a. Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremed. 17(1–6):117–127. doi:10.1080/15226514.2013.862204.
  • Bani A, Echevarria G, Zhang X, Benizri E, Laubie B, Morel JL, Simonnot M-O, Bani A, Echevarria G, Zhang X, et al. 2015b. The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Aust J Bot. 63(2):72–77. doi:10.1071/BT14285.
  • Bani A, Pavlova D, Garrido-Rodríguez B, Kidd PS, Konstantinou M, Kyrkas D, Morel JL, Prieto-Fernandez A, Puschenreiter M, Echevarria G. 2021. Element case studies in the temperate/Mediterranean regions of Europe: nickel. In: van der Ent A, Baker AJM, Echevarria G, Simonnot M-O, Morel JL, editors. Agromining: farming for metals. Cham: Springer International Publishing. (Mineral Resource Reviews); p. 341–363. doi:10.1007/978-3-030-58904-2_16.
  • Barber SA. 1995. Soil nutrient bioavailability: a mechanistic approach. 2nd Ed. Chichester: John Wiley & Sons.
  • Chaney RL, Angle JS, Baker AJM, Li YM. 1999. Method for phytomining of nickel, cobalt and other metals from soil. USA Depart Agricul Patents. 5(944):872.
  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL. 2007. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual. 36(5):1429–1443. doi:10.2134/jeq2006.0514.
  • Chaney RL, Chen K-Y, Li Y-M, Angle JS, Baker AJM. 2008. Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil. 311(1–2):131–140. doi:10.1007/s11104-008-9664-7.
  • Chaney RL. 2017. Effect of soil volume on Ni hyperaccumulation by Alyssum Corsicum. doi:10.13140/RG.2.2.23648.81923.
  • Chaney RL. 2019. Phytoextraction and phytomining of soil nickel. In: Nickel in Soils and Plants. Boca Raton: CRC Press. p. 34.
  • de Vries MPC, Tiller KG. 1978. Sewage sludge as a soil amendment, with special reference to Cd, Cu, Mn, Ni, Pb and Zn—comparison of results from experiments conducted inside and outside a glasshouse. Environ Pollut. 16(3):231–240. doi:10.1016/0013-9327(78)90118-0.
  • de Vries MPC. 1980. How reliable are results of pot experiments? Commun Soil Sci Plant Anal. 11(9):895–902. doi:10.1080/00103628009367090.
  • Fitch A, Helmke PA. 1989. Donnan equilibrium/graphite furnace atomic absorption estimates of soil extract complexation capacities. Anal Chem. 61(11):1295–1298. doi:10.1021/ac00186a023.
  • Garnica-Díaz C, Berazaín Iturralde R, Cabrera B, Calderón-Morales E, Felipe FL, García R, Hechavarría JLG, Guimarães AF, Medina E, Paul ALD, et al. 2023. Global plant ecology of tropical ultramafic ecosystems. Bot Rev. 89(2):115–157. doi:10.1007/s12229-022-09278-2.
  • Jaffré T, Schmid M. 1974. Accumulation du nickel par une Rubiacée de Nouvelle-Calédonie, Psychotria douarrei (G. Beauvisage) Däniker. C R Acad Sci Paris. 13:1727–1730.
  • Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Troumbis AY. 2008. Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev Camb Philos Soc. 83(4):495–508. doi:10.1111/j.1469-185X.2008.00051.x.
  • Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ. 2004. The effect of pH on metal accumulation in two Alyssum species. J Environ Qual. 33(6):2090–2102. doi:10.2134/jeq2004.2090.
  • Li Y-M, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J. 2003. Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil. 249(1):107–115. doi:10.1023/A:1022527330401.
  • Lindsay WL, Norvell WA. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Soc of Amer J. 42(3):421–428. doi:10.2136/sssaj1978.03615995004200030009x.
  • Loeppert RH, Inskeep WP. 1996. Iron. In: Methods of soil analysis. Madison: John Wiley & Sons; p. 639–664. doi: 10.2136/sssabookser5.3.c23.
  • McDonald RG, Whittington BI. 2008. Atmospheric acid leaching of nickel laterites review: part I. Sulphuric acid technologies. Hydrometallurgy. 91(1–4):35–55. doi:10.1016/j.hydromet.2007.11.009.
  • McEwen J, Johnston AE. 1979. The effects of subsoiling and deep incorporation of P and K fertilizers on the yield and nutrient uptake of barley, potatoes, wheat and sugar beet grown in rotation. J Agric Sci. 92(3):695–702. doi:10.1017/S0021859600053946.
  • McGahan DG, Southard RJ, Claassen VP. 2009. Plant-available calcium varies widely in soils on serpentinite landscapes. Soil Sci Soc Amer J. 73(6):2087–2095. doi:10.2136/sssaj2008.0087.
  • Mehlich A. 1984. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal. 15(12):1409–1416. doi:10.1080/00103628409367568.
  • Mudd GM. 2010. Global trends and environmental issues in nickel mining: sulfides versus laterites. Ore Geol Rev. 38(1–2):9–26. doi:10.1016/j.oregeorev.2010.05.003.
  • Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel JL, van der Ent A. 2016. Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant Soil. 406(1–2):55–69. doi:10.1007/s11104-016-2859-4.
  • Nkrumah PN, Chaney RL, Morel JL. 2021. Agronomy of ‘metal crops’ used in agromining. In: van der Ent A, Baker AJM, Echevarria G, Simonnot M-O, Morel JL, editors. Agromining: farming for Metals: extracting unconventional resources using plants. Cham: Springer International Publishing; p. 23–46. doi:10.1007/978-3-030-58904-2_2.
  • OriginLab Corporation. 2016. Origin(Pro) 2016.
  • Poorter H, B Hler J, van Dusschoten D, Climent J, Postma JA. 2012. Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Funct Plant Biol. 39(11):839–850. doi:10.1071/FP12049.
  • Proctor J, Johnston WR, Cottam DA, Wilson AB. 1981. Field-capacity water extracts from serpentine soils. Nature. 294(5838):245–246. doi:10.1038/294245a0.
  • Proctor J, Woodell SRJ. 1975. The ecology of serpentine soils. Adv Ecol Res. 9:255–366.
  • Purwadi I, Gei V, Echevarria G, Erskine PD, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, van der Ent A. 2021. Tools for the discovery of hyperaccumulator plant species in the field and in the herbarium. In: van der Ent A, Baker AJM, Echevarria G, Simonnot M-O, Morel JL, editors. Agromining: farming for metals: extracting unconventional resources using plants. Cham: Springer International Publishing. (Mineral Resource Reviews); p. 183–195. doi:10.1007/978-3-030-58904-2_9.
  • R Core Team. 2022. A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/.
  • Rascio N, Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 180(2):169–181. doi:10.1016/j.plantsci.2010.08.016.
  • Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, Ent A. 2018. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 218(2):407–411. doi:10.1111/nph.14907.
  • van der Ent A, Baker AJM, Echevarria G, Simonnot M-O, Morel JL, editors. 2021. Agromining: farming for metals. 2nd ed. Cham, Switzerland: Springer.
  • van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, et al. 2015. Agromining: farming for metals in the future? Environ Sci Technol. 49(8):4773–4780. doi:10.1021/es506031u.
  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H. 2013. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil. 362(1–2):319–334. doi:10.1007/s11104-012-1287-3.
  • van der Ent A, Echevarria G, Pollard AJ, Erskine PD. 2019. X-ray fluorescence ionomics of herbarium collections. Sci Rep. 9(1):4746. doi:10.1038/s41598-019-40050-6.
  • Walker RB. 1948. Molybdenum deficiency in serpentine barren soils. Science. 108(2809):473–475. doi:10.1126/science.108.2809.473.
  • Walker RB. 1954. The ecology of serpentine soils. 2. Factors affecting plant growth on serpentine soils. Ecol. 35(2):259–266.
  • Willett IR, Batey T. 1977. The effects of metal ions on the root surface phosphatase activity of grasses differing in tolerance to serpentine soil. Plant Soil. 48(1):213–221. doi:10.1007/BF00015169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.