162
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Differential response of biochar in mitigating salinity stress in periwinkle (Catharanthus roseus L.) as an ornamental-medicinal plant species

, , &

References

  • Abbas G, Chen Y, Khan FY, Feng Y, Palta JA, Siddique KH. 2018. Salinity and low phosphorus differentially affect shoot and root traits in two wheat cultivars with contrasting tolerance to salt. Agron. 8(8):155. doi: 10.3390/agronomy8080155.
  • Akhtar SS, Li G, Andersen MN, Liu F. 2014. Biochar enhances yield and quality of tomato under reduced irrigation. Agric. Water Manag. 138:37–44. doi: 10.1016/j.agwat.2014.02.016.
  • Ali S, Rizwan M, Qayyum MF, Ok YS, Ibrahim M, Riaz M, Arif MS, Hafeez F, Al-Wabel MI, Shahzad AN. 2017. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environ Sci Pollut Res Int. 24(14):12700–12712. doi: 10.1007/s11356-017-8904-x.
  • Alias N, Ibrahim N, Hamid MKA, Hasbullah H, Ali RR, Sadikin AN, Asli UA. 2014. Thermogravimetric analysis of rice husk and coconut pulp for potential biofuel production by flash pyrolysis. Malays. J. Anal. Sci. 18:705–710.
  • Amooaghaie R, Ghorbannezhad H. 2014. The effect of salinity on seedling growth, chlorophyll content, relative water content and membrane stability in two canola cultivars. IJPB. 27(2):256–268. https://dorl.net/dor/20.1001.1.23832592.1393.27.2.9.9.
  • Arnon AN. 1967. Method of extraction of chlorophyll in the plants. J. Agron. 23:112–121.
  • Ashraf MPJC, Harris PJC. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166(1):3–16. doi: 10.1016/j.plantsci.2003.10.024.
  • Azimzadeh Y, Najafi N. 2017. Effects of biochar on soil physical, chemical, and biological properties. Land Management J. 4(2):161–173. doi: 10.22092/lmj.2017.109488.
  • Beers RF, Sizer I. 1952. A spectrophotometric method for measuring the breakdown of hydrogen by catalase. JBC. 195(1):133–140. doi: 10.1016/S0021-9258(19)50881-X.
  • Cartaxo PHdA, Silva DGd, Araújo JRES, Barbosa da Silva JH, Targino VA, Xavier LMdS, Pereira Neto F, Oliveira ABd, Silva AMd 2022. Salinity and medicinal plants: challenges and strategies for production. Sci Elec Arch. 15(8):8–15. doi: 10.36560/15820221579.
  • Carter S, Shackley S, Sohi S, Suy T, Haefele S. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agron. 3(2):404–418. doi: 10.3390/agronomy3020404.
  • Choudhary A, Kumar A, Kaur N. 2020. ROS and oxidative burst: roots in plant development. Plant Divers. 42(1):33–43. doi: 10.1016/j.pld.2019.10.002.
  • Chourasia KN, Lal MK, Tiwari RK, Dev D, Kardile HB, Patil VU, Kumar A, Vanishree G, Kumar D, Bhardwaj V, et al. 2021. Salinity stress in potato: understanding physiological, biochemical and molecular responses. Life (Basel). 11(6):545. doi: 10.3390/life11060545.
  • Dionisio Sese ML, Tobita S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135(1):1–9. doi: 10.1016/S0168-9452(98)00025-9.
  • Egamberdieva D, Ma H, Alaylar B, Zoghi Z, Kistaubayeva A, Wirth S, Bellingrath-Kimura SD. 2021. Biochar amendments improve licorice (Glycyrrhiza uralensis Fisch.) growth and nutrient uptake under salt stress. Plants (Basel). 10(10):2135. doi: 10.3390/plants10102135.
  • El Nahhas N, AlKahtani MDF, Abdelaal KAA, Al Husnain L, AlGwaiz HIM, Hafez YM, Attia KA, El-Esawi MA, Ibrahim MFM, Elkelish A. 2021. Biochar and jasmonic acid application attenuates antioxidative systems and improves growth, physiology, nutrient uptake and productivity of faba bean (Vicia faba L.) irrigated with saline water. Plant Physiol Biochem. 166:807–817. doi: 10.1016/j.plaphy.2021.06.033.
  • Enders A, Hanley K, Whitman T, Joseph S, Lehmann J. 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol. 114:644–653. doi: 10.1016/j.biortech.2012.03.022.
  • Farhangi-Abriz S, Torabian S. 2017. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol Environ Saf. 137:64–70. doi: 10.1016/j.ecoenv.2016.11.029.
  • Giannopolitis C, Ries S. 1997. Superoxide dismutase. I: occurrence in higher plant. Plant Physiol. 59(2):309–314. doi: 10.1104/pp.59.2.309.
  • Głąb T, Palmowska J, Zaleski T, Gondek K. 2016. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma. 281:11–20. doi: 10.1016/j.geoderma.2016.06.028.
  • Gong H, Li Y, Li S. 2021. Effects of the interaction between biochar and nutrients on soil organic carbon sequestration in soda saline-alkali grassland: a review. Glob. Ecol. Conserv. 26:e01449. doi: 10.1016/j.gecco.2020.e01449.
  • Hamada AM, EL-Enany AE. 1994. Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biologia Plant. 36(1):75–81. doi: 10.1007/BF02921273.
  • Hasnain M, Munir N, Abideen Z, Zulfiqar F, Koyro HW, El-Naggar A, Caçador I, Duarte B, Rinklebe J, Yong JWH. 2023. Biochar-plant interaction and detoxification strategies under abiotic stresses for achieving agricultural resilience: a critical review. Ecotoxicol Environ Saf. 249:114408. doi: 10.1016/j.ecoenv.2022.114408.
  • Hossain MN, Sarker U, Raihan MS, Al-Huqail AA, Siddiqui MH, Oba S. 2022. Influence of salinity stress on color parameters, leaf pigmentation, polyphenol and flavonoid contents, and antioxidant activity of Amaranthus lividus leafy vegetables. Molecules. 27(6):1821. doi: 10.3390/molecules27061821.
  • Hosseini MS, Ebrahimi M, Abadía J, Kadkhodaei S, Amirian R. 2022. Growth, phytochemical parameters and glycyrrhizin production in licorice (Glycyrrhiza glabra L.) Grown in the Field with Saline Water Irrigation. Ind Crops Prod. 177:114444. doi: 10.1016/j.indcrop.2021.114444.
  • Hosseini MS, Samsampour D, Ebrahimi M, Khanahmadi M. 2019. Study of physiological and biochemical changes of Iraninan licorice (Glycyrrhiza glabra) under salinity stress in filed condition. Crop Breed. J. 11(29):193–201.
  • Hussien Ibrahim ME, Adam Ali AY, Zhou G, Ibrahim Elsiddig AM, Zhu G, Ahmed Nimir NE, Ahmad I. 2020. Biochar application affects forage sorghum under salinity stress. Chil j Agric Res. 80(3):317–325. doi: 10.4067/S0718-58392020000300317.
  • Jiménez-Mejía R, Medina-Estrada RI, Carballar-Hernández S, Orozco-Mosqueda MDC, Santoyo G, Loeza-Lara PD. 2022. Teamwork to survive in hostile soils: use of plant growth-promoting bacteria to ameliorate soil salinity stress in crops. Microorganisms. 10(1):150. doi: 10.3390/microorganisms10010150.
  • Kalanaki M, Karandish F, Afrasiab P, Ritzema H, Khamari I, Tabatabai SM. 2022. Assessing the influence of integrating soil amendment applications with saline water irrigation on Ajwain’s yield and water productivity. Irrig Sci. 40(1):71–85. doi: 10.1007/s00271-021-00759-7.
  • Kanwal S, Ilyas N, Shabir S, Saeed M, Gul R, Zahoor M, Batool N, Mazhar R. 2018. Application of biochar in mitigation of negative effects of salinity stress in wheat (Triticum aestivum L.). J. Plant Nutr. 41(4):526–538. doi: 10.1080/01904167.2017.1392568.
  • Karimi S, Arzani A, Saeidi G. 2015. Effect of salinity stress on antioxidant enzymes and chlorophyll content of salt-tolerant and salt-sensitive safflower (Carthamus tinctorius L.) genotypes. J Plant Process Function. 4(13):25–35. http://jispp.iut.ac.ir/article-1-268-en.html.
  • Kim HS, Kim KR, Yang JE, Ok YS, Owens G, Nehls T, Wessolek G, Kim KH. 2016. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere. 142:153–159. doi: 10.1016/j.chemosphere.2015.06.041.
  • Kookana RS, Sarmah AK, van Zwieten L, Krull E, Singh B. 2011. Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv. Agron. 112:103–143. doi: 10.1016/B978-0-12-385538-1.00003-2.
  • Lashari MS, Ye Y, Ji H, Li L, Kibue GW, Lu H, Zheng J, Pan G. 2015. Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment. J Sci Food Agric. 95(6):1321–1327. doi: 10.1002/jsfa.6825.
  • Luo X, Liu G, Xia Y, Chen L, Jiang Z, Zheng H, Wang Z. 2017. Use of biochar-compost to improve properties and productivity of the de-graded coastal soil in the Yellow River Delta, China. J Soils Sediments. 17(3):780–789. doi: 10.1007/s11368-016-1361-1.
  • Marković M, Šoštarić J, Kojić A, Popović B, Bubalo A, Bošnjak D, Stanisavljević A. 2022. Zinnia (Zinnia elegans L.) and periwinkle (Catharanthus roseus (L.) G. Don) responses to salinity stress. Water. 14(7):1066. doi: 10.3390/w14071066.
  • Martínez-Gómez Á, Poveda J, Escobar C. 2022. Overview of the use of biochar from main cereals to stimulate plant growth. Front Plant Sci. 13:912264. doi: 10.3389/fpls.2022.912264.
  • Mehdizadeh L, Moghaddam M, Lakzian A. 2019. Alleviating negative effects of salinity stress in summer savory (Satureja hortensis L.) by biochar application. Acta Physiol Plant. 41(6):98. doi: 10.1007/s11738-019-2900-3.
  • Mohseni Z, Moradian F, Rahdari P. 2020. The study of activity of antioxidant enzymes, guaiacol peroxidase and ascorbate peroxidase and the amount of Na, K and pigment content in Spinach oleracea L. under NaCl salinity stress. IJPB. 32(4):915–924. https://dorl.net/dor/20.1001.1.23832592.1398.32.4.11.0.
  • Mukherjee A, Lal R. 2013. Biochar impacts on soil physical properties and greenhouse gas emissions. Agron. 3(2):313–339. doi: 10.3390/agronomy3020313.
  • Naseri Moghadam A, Bayat H, Aminifard MH, Moradinezhad F. 2019. Effect of drought and salinity stress on growth, flowering and biochemical characteristics of Narsicuss tazetta L. J. Hortic. Sci. 33(30):451–466. doi: 10.22067/jhorts4.v0i0.76772.
  • Nouri K, Omidi H, Naghdibadi H, Torabi H, Fotokian MH. 2011. Effect of water and soil salinity on flower yield, soluble compounds, content of salinity elements and quality of essential oil of Shirazi chamomile (Matricaria recutita L.). JWRA. 26(4):367–378.
  • Ok YS, Chang SX, Gao B, Chung HJ. 2015. SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research. Environ. Technol. Innov. 4:206–209. doi: 10.1016/j.eti.2015.08.003.
  • Osman ME, Mohsen AA, Nessim AA, El-Saka MS, Mohamed W. 2019. Evaluation of biochar as a soil amendment for alleviating the harmful effect of salinity on Vigna unguiculata (L.) Walp. Egypt J Bot. 59(3):617–631. doi: 10.21608/ejbo.2019.6709.1267.
  • Park JH, Choppala GH, Bolan NS, Chung JW, Chuasavathi T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 348(1-2):439–451. doi: 10.1007/s11104-011-0948-y.
  • Rizwan M, Ali S, Qayyum MF, Ibrahim M, Rehman MZ, Abbas T, Ok YS. 2015. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res Int. 23(3):2230–2248. doi: 10.1007/s11356-015-5697-7.
  • Safdar H, Aniqa A, Yousuf Shafiq AA, Rabia Y, Abbas Shoukat MUH, Muhammad Ishtiaq S. 2019. A review: impact of salinity on plant growth. Natural Sciences. 17(1):34–40.
  • Song X, Li H, Song J, Chen W, Shi L. 2022. Biochar/vermicompost promotes hybrid Pennisetum plant growth and soil enzyme activity in saline soils. Plant Physiol Biochem. 183:96–110. doi: 10.1016/j.plaphy.2022.05.008.
  • Tammeorg P, Simojoki A, Mäkelä P, Stoddard FL, Alakukku L, Helenius J. 2014. Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and Faba bean. Plant Soil. 374(1-2):89–107. doi: 10.1007/s11104-013-1851-5.
  • Thomas SC, Frye S, Gale N, Garmon M, Launchbury R, Machado N, Melamed S, Murray J, Petroff A, Winsborough C. 2013. Biochar mitigates negative effects of salt additions on two herbaceous plant species. J Environ Manage. 129:62–68. doi: 10.1016/j.jenvman.2013.05.057.
  • Tizhoosh-Jalaly MR, Sarmad J, Norastehnia A, Zavareh M, Moshtaghi M. 2014. The effect of methyl jasmonate and different chloride concentrations on photosynthetic pigments and proline content in Nicotiana tabacum L. cv. Cooker 347. IJPB. 6(22):51–62.
  • Upadhyaya A, Sankhla D, Davis TD, Sankhla N, Smith BN. 1985. Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. J. Plant Physiol. 121(5):453–461. doi: 10.1016/S0176-1617(85)80081-X.
  • Usman ARA, Al-Wabel MI, Ok YS, Al-Harbi A, Wahb-Allah M, EL-Naggar AH, Ahmad M, Al-Faraj A, Al-Omran A. 2016. Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation. Pedosphere. 26(1):27–38. doi: 10.1016/S1002-0160(15)60019-4.
  • Veatch-Blohm ME, Chen D, Hassett M. 2013. Narcissus cultivar differences in response to saline irrigation when application began either pre-or postemergence. Hortscience. 48(3):322–329. doi: 10.21273/HORTSCI.48.3.322.
  • Vu PTB, Cao DM, Bui AL, Nguyen NN, Bui LV, Quach PND. 2022. In vitro growth and content of vincristine and vinblastine of Catharanthus roseus L. hairy roots in response to precursors and elicitors. Plant Sci Today. 9(1):21–28. doi: 10.14719/pst.1337.
  • Wong JTF, Chen X, Deng W, Chai Y, Ng CWW, Wong MH. 2019. Effects of biochar on bacterial communities in a newly established landfill cover topsoil. J Environ Manage. 236:667–673. doi: 10.1016/j.jenvman.2019.02.010.
  • Yang A, Akhtar SS, Li L, Fu Q, Li Q, Naeem MA, He X, Zhang Z, Jacobsen SE. 2020. Biochar mitigates combined effects of drought and salinity stress in quinoa. Agronomy. 10(6):912. doi: 10.3390/agronomy10060912.
  • Zaredost F, Hashemabadi D, Jadid Soleimandarabi M. 2017. Effect of strengths and exposure durations of magnetic field on seeds germination of Catharanthus roseus cv. ‘Acillata’. JOP. 7(2):93–102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.