134
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploitation of green synthesized chromium doped zinc oxide nanorods (NRs) mediated by flower extract of Rhododendron arboreum for highly efficient photocatalytic degradation of cationic dyes Malachite green (MG) and Fuchsin basic (FB)

, , , , &

References

  • Aftab S, Shabir T, Shah A, Nisar J, Shah I, Muhammad H, Shah NS. 2022. Highly efficient visible light active doped ZnO photocatalysts for the treatment of wastewater contaminated with dyes and pathogens of emerging concern. Nanomaterials. 12(3):486. doi: 10.3390/nano12030486.
  • Agarwal S, Rajput A. 2022. Rhododendron arboreum phytochemistry, medicinal applications, and pharmacology: a review. Int J Res Appl Sci Biotechnol. 9:157–165.
  • Alkallas FH, Trabelsi ABG, Nasser R, Fernandez S, Song JM, Elhouichet H. 2021. Promising Cr-doped ZnO nanorods for photocatalytic degradation facing pollution. Appl Sci. 12(1):34. doi: 10.3390/app12010034.
  • Asjadi F, Yaghoobi M. 2022. Characterization and dye removal capacity of green hydrothermal synthesized ZnO nanoparticles. Ceram Int. 48(18):27027–27038. doi: 10.1016/j.ceramint.2022.06.015.
  • Bawazeer TM. 2022. Facile and novel route for the preparation of ZnO nanoparticles with different Cr loadings for opto-photocatalysis applications. Catalysts. 12(10):1093. doi: 10.3390/catal12101093.
  • Boulkhessaim S, Gacem A, Khan SH, Amari A, Yadav VK, Harharah HN, Elkhaleefa AM, Yadav KK, Rather S, Ahn HJ, et al. 2022. Emerging trends in the remediation of persistent organic pollutants using nanomaterials and related processes: a review. Nanomaterials. 12(13):2148. doi: 10.3390/nano12132148.
  • Channei D, Inceesungvorn B, Wetchakun N, Ukritnukun S, Nattestad A, Chen J, Phanichphant S. 2014. Photocatalytic degradation of methyl orange by CeO2 and Fe-doped CeO2 films under visible light irradiation. Sci Rep. 4(1):5757. doi: 10.1038/srep05757.
  • Chaudhry FN, Malik M. 2017. Factors affecting water pollution: a review. J Ecosyst Ecogr. 07(01):225–231. doi: 10.4172/2157-7625.1000225.
  • Chen X, Wu Z, Liu D, Gao Z. 2017. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res Lett. 12(1):143. doi: 10.1186/s11671-017-1904-4.
  • Das J, Das KC, Thakurata DG, Dhar SS. 2021. Visible light-assisted degradation of binary mixture of dyes using purple tea-mediated zinc oxide nanoparticles. Environmental Quality Mgmt. 32(1):27–35. doi: 10.1002/tqem.21803.
  • Dou M, Wang J, Gao B, Xu C, Yang F. 2020. Photocatalytic difference of amoxicillin and cefotaxime under visible light by mesoporous g-C3N4: mechanism, degradation pathway and DFT calculation. Chem Eng J. 383:123134. doi: 10.1016/j.cej.2019.123134.
  • Elamin N, Modwi A, Ben Aissa MA, Taha KK, Al-Duaij OK, Yousef TA. 2021. Fabrication of Cr–ZnO photocatalyst by starch-assisted sol–gel method for photodegradation of Congo red under visible light. J Mater Sci: mater Electron. 32(2):2234–2248. doi: 10.1007/s10854-020-04988-y.
  • Elfeky AS, Salem SS, Elzaref AS, Owda ME, Eladawy HA, Saeed AM, Awad MA, Abou-Zeid RE, Fouda A. 2020. Multifunctional cellulose nanocrystal/metal oxide hybrid, photodegradation, antibacterial and larvicidal activities. Carbohydr Polym. 230:115711. doi: 10.1016/j.carbpol.2019.115711.
  • Elgarahy AM, Elwakeel KZ, Mohammad SH, Elshoubaky GA. 2021. A critical review of biosorption of dyes, heavy metals, and metalloids from wastewater as an efficient and green process. Clean Eng Technol. 4:100209. doi: 10.1016/j.clet.2021.100209.
  • Feng M, Wu L, Wang X, Wang J, Wang D, Li C. 2022. A strategy of designed anionic metal–organic framework adsorbent based on reticular chemistry for rapid selective capture of carcinogenic dyes. Appl Organomet Chem. 36(3):6546.
  • Greeshma KP, Thamizselvi R. 2022. Experimental and theoretical approach on green synthesized zinc oxide nanoparticles from combined leaf extracts of Catharanthus roseus and Morinda Citrifolia for in vitro anti-cancer studies. J Mol Liq. 351:118636. doi: 10.1016/j.molliq.2022.118636.
  • Gupta A, Khosla N, Govindasamy V, Saini A, Annapurna K, Dhakate SR. 2020. Trimetallic composite nanofibers for antibacterial and photocatalytic dye degradation of mixed dye water. Appl Nanosci. 10(11):4191–4205. doi: 10.1007/s13204-020-01540-6.
  • Gurylev V, Perng TP. 2021. Defect engineering of ZnO: review on oxygen and zinc vacancies. J Eur Ceram Soc. 41(10):4977–4996. doi: 10.1016/j.jeurceramsoc.2021.03.031.
  • Hasan IMA, Tawfik AR, Assaf FH. 2022. GC/MS screening of buckthorn phytochemicals and their use to synthesize ZnO nanoparticles for photocatalytic degradation of malachite green dye in water. Water Sci Technol. 85(2):664–684. doi: 10.2166/wst.2021.638.
  • Hassanpour M, Safardoust-Hojaghan H, Salavati-Niasari M. 2017. Degradation of methylene blue and rhodamine B as water pollutants via green synthesized Co3O4/ZnO nanocomposite. J Mol Liq. 229:293–299. doi: 10.1016/j.molliq.2016.12.090.
  • Iqbal T, Masood A, Khalid NR, Tahir MB, Asiri AM, Alrobei H. 2022. Green synthesis of novel lanthanum doped copper oxide nanoparticles for photocatalytic application: correlation between experiment and COMSOL simulation. Ceram Int. 48(10):13420–13430. doi: 10.1016/j.ceramint.2022.01.160.
  • Jadoun S, Yáñez J, Mansilla HD, Riaz U, Chauhan NPS. 2022. Conducting polymers/zinc oxide-based photocatalysts for environmental remediation: a review. Environ Chem Lett. 20(3):2063–2083. doi: 10.1007/s10311-022-01398-w.
  • Kannan S, Subiramaniyam NP, Sathishkumar M. 2020. A novel green synthesis approach for improved photocatalytic activity and antibacterial properties of zinc sulfide nanoparticles using plant extract of Acalypha indica and Tridax procumbens. J Mater Sci Mater Electron. 31(12):9846–9859. doi: 10.1007/s10854-020-03529-x.
  • Kaur P, Kumar S, Negi NS, Rao SM. 2015. Enhanced magnetism in Cr-doped ZnO nanoparticles with nitrogen co-doping synthesized using sol-gel technique. Appl Nanosci. 5(3):367–372. doi: 10.1007/s13204-014-0326-1.
  • Khan S, Malik A. 2018. Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environ Sci Pollut Res Int. 25(5):4446–4458. doi: 10.1007/s11356-017-0783-7.
  • Khan MI, Naeem M, Mustafa GM, Abubshait SA, Mahmood A, Al-Masry W, Al-Garadi NYA, Ramay SM. 2020. Synthesis and characterization of Co and Ga Co-doped ZnO thin films as an electrode for dye sensitized solar cells. Ceram Int. 46(17):26590–26597. doi: 10.1016/j.ceramint.2020.07.127.
  • Kovács Z, Molnár C, Gyulavári T, Magyari K, Tóth ZR, Baia L, Pap Z, Hernádi K. 2022. Solvothermal synthesis of ZnO spheres: tuning the structure and morphology from nano- to micro-meter range and its impact on their photocatalytic activity. Catal Today. 397-399:16–27. doi: 10.1016/j.cattod.2022.03.004.
  • Kuila A, Maity R, Acharya P, Brandao P, Maity T, Sepay N, Samanta BC. 2022. Significant photodegradation of carcinogenic organic dyes by a 1D supramolecular heteroleptic Cu (ii) complex under sunlight irradiation. New J Chem. 46(24):11804–11811. doi: 10.1039/D2NJ01112C.
  • Kumar S, Chauhan C, Kumar R, Saini A, Kalra N, Singh A, Sharma S. 2023. Concomitant role of metal clusters and ligands in the synthesis and control of porosity in metal-organic frameworks: a literature review. Results Chem. 6:101206. doi: 10.1016/j.rechem.2023.101206.
  • Kumar N, Gusain R, Pandey S, Ray SS. 2023. Hydrogel nanocomposite adsorbents and photocatalysts for sustainable water purification. Adv Mater Interfaces. 10:2201375.
  • Lemos SCS, Rezende TKdL, Assis M, Romeiro FdC, Peixoto DA, Gomes EdO, Jacobsen GM, Teodoro MD, Gracia L, Ferrari JL, et al. 2022. Efficient Ni and Fe doping process in ZnO with enhanced photocatalytic activity: a theoretical and experimental investigation. Mater Res Bull. 152:111849. doi: 10.1016/j.materresbull.2022.111849.
  • Li W, Wang G, Chen C, Liao J, Li Z. 2017. Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+ and Co2+ ions. Nanomaterials. 7(1):20. doi: 10.3390/nano7010020.
  • Liu Z, Khan TA, Islam MA, Tabrez U. 2022. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon. Bioresour Technol. 354:127168. doi: 10.1016/j.biortech.2022.127168.
  • Loeb SK, Alvarez PJJ, Brame JA, Cates EL, Choi W, Crittenden J, Dionysios DD, Li Q, Li-Puma G, Quan X, et al. 2018. The technology horizon for photocatalytic water treatment: sunrise or sunset? Washington, DC: ACS Publications. p. 2937–2947.
  • Maheshwari K, Agrawal M, Gupta AB. 2021. Dye pollution in water and wastewater. In: Muthu SS, Khadir A, editors. Novel materials for dye-containing wastewater treatment. Singapore: Springer. p. 1–25.
  • Malinauskiene L, Bruze M, Ryberg K, Zimerson E, Isaksson M. 2013. Contact allergy from disperse dyes in textiles–a review. Contact Dermat. 68(2):65–75. doi: 10.1111/cod.12001.
  • Meena PL, Poswal K, Surela AK. 2022. Facile synthesis of ZnO nanoparticles for the effective photodegradation of malachite green dye in aqueous solution. Water Environ J. 36(3):513–524. doi: 10.1111/wej.12783.
  • Mohamed Isa ED, Che Jusoh NW, Hazan R, Shameli K. 2021. Photocatalytic degradation of methyl orange using pullulan-mediated porous zinc oxide microflowers. Environ Sci Pollut Res Int. 28(5):5774–5785. doi: 10.1007/s11356-020-10939-1.
  • Olas B, Białecki J, Urbańska K, Bryś M. 2021. The effects of natural and synthetic blue dyes on human health: a review of current knowledge and therapeutic perspectives. Adv Nutr. 12(6):2301–2311. doi: 10.1093/advances/nmab081.
  • Osuntokun J, Onwudiwe DC, Ebenso EE. 2019. Green synthesis of ZnO nanoparticles using aqueous Brassica oleracea L. var. italica and the photocatalytic activity. Green Chem Lett Rev. 12(4):444–457. doi: 10.1080/17518253.2019.1687761.
  • Padhi B. 2012. Pollution due to synthetic dyes toxicity and carcinogenicity studies and remediation. Int J Environ Sci. 3(3):940–955.
  • Pandey S, Son N, Kang M. 2022. Synergistic sorption performance of Karaya Gum crosslink poly(acrylamide-co-acrylonitrile) @ metal nanoparticle for organic pollutants. Int J Biol Macromol. 210:300–314. doi: 10.1016/j.ijbiomac.2022.05.019.
  • Panžíc I, Capan I, Brodar T, Bafti A, Mandíc V. 2021. Structural and electrical characterization of pure and Al-doped ZNO nanorods. Materials. 14(23):7454. doi: 10.3390/ma14237454.
  • Patel M, Mishra S, Verma R, Shikha D. 2022. Synthesis of ZnO and CuO nanoparticles via sol gel method and its characterization by using various technique. Discov Mater. 2(1):12–23. doi: 10.1007/s43939-022-00022-6.
  • Powar N, Patel V, Pagare PK, Pandav RS. 2019. Cu nanoparticle: synthesis, characterization and application. Chem Methodol. 3:457–480. doi: 10.22034/chemm.2019.154075.1112.
  • Qi K, Xing X, Zada A, Li M, Wang Q, Liu SY, Lin H, Wang G. 2020. Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: experimental and DFT studies. Ceram Int. 46(2):1494–1502. doi: 10.1016/j.ceramint.2019.09.116.
  • Qin L, Mawignon FJ, Hussain M, Ange NK, Lu S, Hafezi M, Dong G. 2021. Economic friendly ZnO-based UV sensors using hydrothermal growth: a review. Materials. 14(15):4083. doi: 10.3390/ma14154083.
  • Raha S, Ahmaruzzaman M. 2022. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Adv. 4(8):1868–1925. doi: 10.1039/d1na00880c.
  • Rai, Hritika, Kondal, Neha, Prashant,. 2022. A review on defect related emissions in undoped ZnO nanostructures. Mater Today Proc. 48:1320–1324. doi: 10.1016/j.matpr.2021.08.343.
  • Rajapriya M, Sharmili SA, Baskar R, Balaji R, Alharbi NS, Kadaikunnan S, Khaled JM, Alanzi KF, Vaseeharan B. 2020. Synthesis and characterization of zinc oxide nanoparticles using Cynara scolymus leaves: enhanced hemolytic, antimicrobial, antiproliferative, and photocatalytic activity. J Clust Sci. 31(4):791–801. doi: 10.1007/s10876-019-01686-6.
  • Rathnasamy R, Thangasamy P, Thangamuthu R, Sampath S, Alagan V. 2017. Green synthesis of ZnO nanoparticles using Carica papaya leaf extracts for photocatalytic and photovoltaic applications. J Mater Sci Mater Electron. 28(14):10374–10381. doi: 10.1007/s10854-017-6807-8.
  • Selvaraj S, Patrick D S, Vangari GA, Mohan MK, S P, C M. 2022. Facile synthesis of Sm doped ZnO nanoflowers by Co-precipitation method for enhanced photocatalytic degradation of MB dye under sunlight irradiation. Ceram Int. 48(19):29049–29058. doi: 10.1016/j.ceramint.2022.04.299.
  • Singh B, Kumar V, Madan R, Garg R, Mohan D. 2023. Synthesis of cadmium-doped zinc oxide nanoparticles via sol–gel method for ethanol gas sensing application. J Mater Sci Mater Electron. 34(13):1114. doi: 10.1007/s10854-023-10537-0.
  • Singh P, Kumar R, Singh RK. 2019. Progress on transition metal-doped ZnO nanoparticles and its application. Ind Eng Chem Res. 58(37):17130–17163. doi: 10.1021/acs.iecr.9b01561.
  • Singh MK, Mehata MS. 2019. Phase-dependent optical and photocatalytic performance of synthesized titanium dioxide (TiO2) nanoparticles. Optik. 193:163011. doi: 10.1016/j.ijleo.2019.163011.
  • Siva N, Sakthi D, Ragupathy S, Arun V, Kannadasan N. 2020. Synthesis, structural, optical and photocatalytic behavior of Sn doped ZnO nanoparticles. Mater Sci Eng B. 253:114497. doi: 10.1016/j.mseb.2020.114497.
  • Slama HB, Chenari Bouket A, Pourhassan Z, Alenezi FN, Silini A, Cherif-Silini H, Oszako T, Luptakova L, Golińska P, Belbahri L. 2021. Diversity of synthetic dyes from textile industries, discharge impacts, and treatment methods. Appl Sci. 11(14):6255. doi: 10.3390/app11146255.
  • Srinet G, Sharma S, Guerrero-Sanchez J, Garcia-Diaz R, Ponce-Perez R, Siqueiros JM, Herrera OR. 2020. Room-temperature ferromagnetism on ZnO nanoparticles doped with Cr: an experimental and theoretical analysis. J Alloys Compds. 849:156587. doi: 10.1016/j.jallcom.2020.156587.
  • Stefaniuk I, Cieniek B, Rogalska I, Virt IS, Kościak A. 2018. Magnetic properties of ZnO: co layers obtained by pulsed laser deposition method. Mater Sci Pol. 36(3):439–444. doi: 10.1515/msp-2017-0114.
  • Swamidasan R, Kumar RS, Deepa RM. 2020. Medicinal values of Rhododendron arboreum: A comprehensive review. Int J Sci Res. 9:1768–1771.
  • Tahir MB, Sagir M, Shahzad K. 2019. Removal of acetylsalicylate and methyl-theobromine from aqueous environment using nano-photocatalyst WO3-TiO2 @g-C3N4 composite. J Hazard Mater. 363:205–213. doi: 10.1016/j.jhazmat.2018.09.055.
  • Tanuj, Kumar R, Kumar S, Kalra N, Sharma S, Singh A. 2023. Green synthesis of zinc oxide nanoparticles from Rhododendron arboreum extract and their potential applications in photocatalytic degradation of cationic dyes malachite green and Fuchsin basic dye. Chem Pap. 77: 6604–6583. doi: 10.1007/s11696-023-02960-8.
  • Tereshchenko A, Bechelany M, Viter R, Khranovskyy V, Smyntyna V, Starodub N, Yakimova R. 2016. Optical biosensors based on ZnO nanostructures: advantages and perspectives. A review. Sens Actuators B Chem. 229:664–677. doi: 10.1016/j.snb.2016.01.099.
  • Wagh SS, Kadam VS, Jagtap CV, Salunkhe DB, Patil RS, Pathan HM, Patole SP. 2023. Comparative studies on synthesis, characterization and photocatalytic activity of Ag doped ZnO nanoparticles. ACS Omega. 8(8):7779–7790. doi: 10.1021/acsomega.2c07499.
  • Wang L, Zhao J, Liu H, Huang J. 2018. Design, modification and application of semiconductor photocatalysts. J Taiwan Inst Chem Eng. 93:590–602. doi: 10.1016/j.jtice.2018.09.004.
  • Wu Z, Xue Y, Gao Z, Li Y, Zhang L, Yang X, Liu X, Chen Z. 2021. Synthesis of Ni-doped anatase TiO2 single crystals loaded on wood-based activated carbon for enhanced photodegradation of triphenylmethane dyes. Environ Sci Pollut Res Int. 28(6):6491–6503. doi: 10.1007/s11356-020-10877-y.
  • Xiong S, Liu X, Zhu X, Liang G, Jiang Z, Cui B, Bai J. 2021. One-step preparation of well-dispersed spindle-like Fe2O3 nanoparticles on g-C3N4 as highly efficient photocatalysts. Ecotoxicol Environ Saf. 208:111519. doi: 10.1016/j.ecoenv.2020.111519.
  • Xu Y, Hu J, Zhang X, Yuan D, Duan G, Li Y. 2022. Robust and multifunctional natural polyphenolic composites for water remediation. Mater Horiz. 9(10):2496–2517. doi: 10.1039/d2mh00768a.
  • Yang P, Bai W, Zou Y, Zhang X, Yang Y, Duan G, Wu J, Xu Y, Li Y. 2023. A melanin-inspired robust aerogel for multifunctional water remediation. Mater Horiz. 10(3):1020–1029. doi: 10.1039/d2mh01474b.
  • Ye Z, Kong L, Chen F, Chen Z, Lin Y, Liu CA. 2018. Comparative study of photocatalytic activity of ZnS photocatalyst for degradation of various dyes. Optik. 164:345–354. doi: 10.1016/j.ijleo.2018.03.030.
  • Zinatloo-Ajabshir S, Baladi M, Amiri O, Salavati-Niasari M. 2020. Sonochemical synthesis and characterization of silver tungstate nanostructures as visible-light-driven photocatalyst for waste-water treatment. Sep Purif Technol. 248:117062. doi: 10.1016/j.seppur.2020.117062.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.