148
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Rhizosphere microbiome of plants used in phytoremediation of mine tailing dams

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Addai-Arhin S, Novirsa R, Jeong H, Phan QD, Hirota N, Ishibashi Y, Shiratsuchi H, Arizono K. 2023. Mercury waste from artisanal and small-scale gold mining facilities: a risk to farm ecosystems—a case study of Obuasi, Ghana. Environ Sci Pollut Res Int. 30(2):4293–4308. doi:10.1007/s11356-022-22456-4.
  • Agnihotri A, Gupta P, Dwivedi A, Seth CS. 2018. Counteractive mechanism (s) of salicylic acid in response to lead toxicity in Brassica juncea (L.) Czern. cv. Varuna. Planta. 248(1):49–68. doi:10.1007/s00425-018-2867-0.
  • Alvarez A, Saez JM, Davila Costa JS, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Polti MA, Amoroso MJ. 2017. Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere. 166:41–62. doi:10.1016/j.chemosphere.2016.09.070.
  • An Q, Jin L, Deng S, Li Z, Zhang C. 2021. Removal of Mn(II) by a nitrifying bacterium Acinetobacter sp. AL-6: efficiency and mechanisms. Environ Sci Pollut Res Int. 28(24):31218–31229. doi:10.1007/s11356-021-12764-6.
  • Antwi-Agyei P, Hogarh JN, Foli G. 2009. Trace elements contamination of soils around gold.pdf. African J Environ Sci Technol. 3(11):353–359.
  • Aram SA, Osei Lartey P, Amoah SK, Appiah A. 2021. Gold eco-toxicology: assessment of the knowledge gap on the environmental and health effects of mercury between artisanal small scale and medium scale gold miners in Ghana. Resour Policy. 72(April):102108. doi:10.1016/j.resourpol.2021.102108.
  • Asaf S, Numan M, Khan AL, Al-Harrasi A. 2020. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Crit Rev Biotechnol. [Internet]. 40(2):138–152. doi:10.1080/07388551.2019.1709793.
  • Asare MO, Száková J, Tlustoš P. 2023. Mechanisms of As, Cd, Pb, and Zn hyperaccumulation by plants and their effects on soil microbiome in the rhizosphere. Front Environ Sci. 11:1157415. doi:10.3389/fenvs.2023.1157415.
  • Bageel A, Honda MDH, Carrillo JT, Borthakur D. 2020. Giant leucaena (Leucaena leucocephala subsp. glabrata): a versatile tree-legume for sustainable agroforestry. Agroforest Syst. [Internet]. 94(1):251–268. doi:10.1007/s10457-019-00392-6.
  • Bansah KJ, Addo WK. 2016. Phytoremediation potential of plants grown on reclaimed spoil lands. Ghana Min J. 16(1):68. doi:10.4314/gmj.v16i1.8.
  • Bansah KJ, Dumakor-Dupey NK, Stemn E, Galecki G. 2018. Mutualism, commensalism or parasitism? Perspectives on tailings trade between large-scale and artisanal and small-scale gold mining in Ghana. Resour Policy. 57(April 2017):246–254. doi:10.1016/j.resourpol.2018.03.010.
  • Barra Caracciolo A, Terenzi V. 2021. Rhizosphere microbial communities and heavy metals. Microorganisms. 9(7):1462. doi:10.3390/microorganisms9071462.
  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 37(8):852–857. doi:10.1038/s41587-019-0209-9.
  • Bomfim NCP, Aguilar JV, de Paiva W da S, de Souza LA, Justino GC, Faria GA, Camargos LS. 2021. Iron phytostabilization by Leucaena leucocephala. South African J Bot. 138:318–327. doi:10.1016/j.sajb.2021.01.013.
  • Boros-Lajszner E, Wyszkowska J, Borowik A, Kucharski J. 2021. The response of the soil microbiome to contamination with cadmium, cobalt and nickel in soil sown with brassica napus. Minerals. 11(5):498. doi:10.3390/min11050498.
  • Borymski S, Cycoń M, Beckmann M, Mur LAJ, Piotrowska-Seget Z. 2018. Plant species and heavy metals affect biodiversity of microbial communities associated with metal-tolerant plants in metalliferous soils. Front Microbiol. 9(JUL):1425. doi:10.3389/fmicb.2018.01425.
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 13(7):581–583. doi:10.1038/nmeth.3869.
  • Cao Y, Ma C, Chen H, Chen G, White JC, Xing B. 2020. Copper stress in flooded soil: impact on enzyme activities, microbial community composition and diversity in the rhizosphere of Salix integra. Sci Total Environ. [Internet]. 704:135350. doi:10.1016/j.scitotenv.2019.135350.
  • Cecchi G, Di Piazza S, Rosatto S, Mariotti MG, Roccotiello E, Zotti M. 2021. A mini-review on the co-growth and interactions among microorganisms (Fungi and Bacteria) From Rhizosphere of Metal-Hyperaccumulators. Front Fungal Biol. 2:787381. doi:10.3389/ffunb.2021.787381.
  • Chong J, Liu P, Zhou G, Xia J. 2020. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc. 15(3):799–821. doi:10.1038/s41596-019-0264-1.
  • Chung AP, Coimbra C, Farias P, Francisco R, Branco R, Simão FV, Gomes E, Pereira A, Vila MC, Fiúza A, et al. 2019. Tailings microbial community profile and prediction of its functionality in basins of tungsten mine. Sci Rep. 9(1):19596. doi:10.1038/s41598-019-55706-6.
  • Cobbinah PB, Amoako C. 2018. From Gold Coast to Ghana: changing political economy of mining towns. Cities. 83(May):83–91. doi:10.1016/j.cities.2018.06.011.
  • Das S, Chou ML, Jean JS, Yang HJ, Kim PJ. 2017. Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittata. J Hazard Mater. 325:279–287. doi:10.1016/j.jhazmat.2016.12.006.
  • Dey S, Regon P, Kar S, Panda SK. 2020. Chelators of iron and their role in plant’s iron management. Physiol Mol Biol Plants. 26(8):1541–1549. doi:10.1007/s12298-020-00841-y.
  • Doku ET, Belford EJD. 2022. Effect of heavy metals and physicochemical parameters on diversity of plants at a gold mine tailings dam in Ghana. J Ecol Nat Environ. 14(4):98–108. doi:10.5897/JENE2022.0930.
  • Dou X, Dai H, Skuza L, Wei S. 2022. Cadmium removal potential of hyperaccumulator Solanum nigrum L. under two planting modes in three years continuous phytoremediation. Environ Pollut. 307:119493. doi:10.1016/j.envpol.2022.119493.
  • Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI. 2020. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 38(6):685–688. doi:10.1038/s41587-020-0548-6.
  • Emmanuel AY, Jerry CS, Dzigbodi DA. 2018. Review of environmental and health impacts of mining in Ghana. J Health Pollut. 8(17):43–52. doi:10.5696/2156-9614-8.17.43.
  • van der Ent A, Joseph Pollard A, Echevarria G, Abubakari F, Erskine PD, Baker AJM, Reeves RD. 2021. Exceptional Uptake and Accumulation of Chemical Elements in Plants: extending the Hyperaccumulation Paradigm BT - Agromining: farming for Metals: extracting Unconventional Resources Using Plants. In: van der Ent A, Baker AJM, Echevarria G, Simonnot M-O, Morel JL. (Eds), Agromining: Farming for Metals. Extracting Unconventional Resources Using Plants. Mineral Resource Reviews. 2nd ed. Springer, Cham. p. 99–131. https://doi.org/10.1007/978-3-030-58904-2_6
  • Fagnano M, Agrelli D, Pascale A, Adamo P, Fiorentino N, Rocco C, Pepe O, Ventorino V. 2020. Copper accumulation in agricultural soils: risks for the food chain and soil microbial populations. Sci Total Environ. 734:139434. doi:10.1016/j.scitotenv.2020.139434.
  • Fashola MO, Mpode Ngole-Jeme V, Oluranti Babalola O. 2020. Physicochemical properties, heavy metals, and metal-tolerant bacteria profiles of abandoned gold mine tailings in Krugersdorp, South Africa. Can J Soil Sci. 100(3):217–233. doi:10.1139/cjss-2018-0161.
  • Gagnon V, Gagnon V, Rodrigue-Morin M, Tremblay J, Wasserscheid J, Champagne J, Bellenger JP, Greer CW, Roy S. 2020. Life in mine tailings: microbial population structure across the bulk soil, rhizosphere, and roots of boreal species colonizing mine tailings in northwestern Québec. Ann Microbiol. 70(1):1–18. doi:10.1186/s13213-020-01582-9.
  • Gao TP, Wan ZD, Liu XX, Fu JW, Chang GH, Sun HL, Li HJ, Shen YY, Liu YB, Fang XW. 2021. Effects of heavy metals on bacterial community structure in the rhizosphere of Salsola collina and bulk soil in the Jinchuan mining area. Geomicrobiol J. 38(7):620–630. doi:10.1080/01490451.2021.1914784.
  • Garcia KGV, Mendes Filho PF, Pinheiro JI, do Carmo JF, de Araújo Pereira AP, Martins CM, de Abreu MGP, Oliveira Filho JdS 2020. Attenuation of manganese-induced toxicity in Leucaena leucocephala colonized by Arbuscular Mycorrhizae. Water Air Soil Pollut. 231(1):1–15. doi:10.1007/s11270-019-4381-9.
  • Guo D, Fan Z, Lu S, Ma Y, Nie X, Tong F, Peng X. 2019. Changes in rhizosphere bacterial communities during remediation of heavy metal-accumulating plants around the Xikuangshan mine in southern China. Sci Rep. 9(1):1947. doi:10.1038/s41598-018-38360-2.
  • Hadzi GY, Ayoko GA, Essumang DK, Osae SKD. 2019. Contamination impact and human health risk assessment of heavy metals in surface soils from selected major mining areas in Ghana. Environ Geochem Health. [Internet]. 41(6):2821–2843. doi:10.1007/s10653-019-00332-4.
  • Han S, Zhao Z, Yang L, Huang J, Wang Y, Feng J. 2023. The performance of metagenomic next-generation sequencing in diagnosing pulmonary infectious diseases using authentic clinical specimens : the Illumina platform versus the Beijing Genomics Institute platform. Front Pharmacol. 14:1164633. doi:10.3389/fphar.2023.1164633.
  • Hu L, Wang R, Liu X, Xu B, Xie T, Li Y, Wang M, Wang G, Chen Y. 2018. Cadmium phytoextraction potential of king grass (Pennisetum sinese Roxb.) and responses of rhizosphere bacterial communities to a cadmium pollution gradient. Environ Sci Pollut Res Int. 25(22):21671–21681. doi:10.1007/s11356-018-2311-9.
  • Islam K, Murakami S. 2021. Global-scale impact analysis of mine tailings dam failures: 1915–2020. Glob Environ Chang. [Internet]. 70:102361. doi:10.1016/j.gloenvcha.2021.102361.
  • Jia P, Li F, Zhang S, Wu G, Wang Y, Li JT. 2022. Microbial community composition in the rhizosphere of Pteris vittata and its effects on arsenic phytoremediation under a natural arsenic contamination gradient. Front Microbiol. 13:989272. doi:10.3389/fmicb.2022.989272.
  • Kabas S, Saavedra-Mella F, Huynh T, Kopittke PM, Carter S, Huang L. 2017. Metal uptake and organic acid exudation of native Acacia species in mine tailings. Aust J Bot. 65(4):357–367. doi:10.1071/BT16189.
  • Kabata-Pendias A. 2011. Trace elements in soils and plants. 4th Edition. [place unknown]: CRC Press Taylor & Francis Group, 6000 Broken Sound Parkway NW Vol. 53 Issue 9.
  • Kahangwa CA, Nahonyo CL, Sangu G, Nassary EK. 2021. Assessing phytoremediation potentials of selected plant species in restoration of environments contaminated by heavy metals in gold mining areas of Tanzania. Heliyon. [Internet]. 7(9):e07979. doi:10.1016/j.heliyon.2021.e07979.
  • Kamal N, Liu Z, Qian C, Wu J, Zhong X. 2021. Improving hybrid Pennisetum growth and cadmium phytoremediation potential by using Bacillus megaterium BM18-2 spores as biofertilizer. Microbiol Res. [Internet]. 242(July 2020):126594. doi:10.1016/j.micres.2020.126594.
  • Kasowska D, Gediga K, Spiak Z. 2018. Heavy metal and nutrient uptake in plants colonizing post-flotation copper tailings. Environ Sci Pollut Res Int. 25(1):824–835. doi:10.1007/s11356-017-0451-y.
  • Keiblinger KM, Schneider M, Gorfer M, Paumann M, Deltedesco E, Berger H, Jöchlinger L, Mentler A, Zechmeister-Boltenstern S, Soja G, et al. 2018. Assessment of Cu applications in two contrasting soils—effects on soil microbial activity and the fungal community structure. Ecotoxicology. 27(2):217–233. doi:10.1007/s10646-017-1888-y.
  • Khalid M, Liu X, Ur Rahman S, Rehman A, Zhao C, Li X, Yucheng B, Hui N. 2023. Responses of microbial communities in rhizocompartments of king grass to phytoremediation of cadmium-contaminated soil. Sci Total Environ. 904(August):167226. doi:10.1016/j.scitotenv.2023.167226.
  • Klimek B, Stępniewska K, Seget B, Pandey VC, Babst-Kostecka A. 2023. Diversity and activity of soil biota at a post-mining site highly contaminated with Zn and Cd are enhanced by metallicolous compared to non-metallicolous Arabidopsis halleri ecotypes. L Degrad Dev. 34(5):1538–1548. https://doi.org/10.1002/ldr.4551
  • Kumar Awasthi M, Ravindran B, Sarsaiya S, Chen H, Wainaina S, Singh E, Liu T, Kumar S, Pandey A, Singh L, et al. 2020. Metagenomics for taxonomy profiling: tools and approaches. Bioengineered. 11(1):356–374. doi:10.1080/21655979.2020.1736238.
  • Kushwaha P, Neilson JW, Maier RM, Babst-Kostecka A. 2022. Soil microbial community and abiotic soil properties influence Zn and Cd hyperaccumulation differently in Arabidopsis halleri. Sci Total Environ. 803:150006. doi:10.1016/j.scitotenv.2021.150006.
  • Lee Y-Y, Lee SY, Cho K-S. 2023. Phytoremediation and bacterial community dynamics of diesel- and heavy metal-contaminated soil: long-term monitoring on a pilot scale. Int Biodeterior Biodegradation. 183:105642. doi:10.1016/j.ibiod.2023.105642.
  • Li S, Wu J, Huo Y, Zhao X, Xue L. 2021. Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in Northwest China. Sci Total Environ. [Internet]. 752(88):141827. doi:10.1016/j.scitotenv.2020.141827.
  • Li X, Sun M, Zhang L, Finlay RD, Liu R, Lian B. 2022. Widespread bacterial responses and their mechanism of bacterial metallogenic detoxification under high concentrations of heavy metals. Ecotoxicol Environ Saf. [Internet]. 246:114193. doi:10.1016/j.ecoenv.2022.114193.
  • Liu J l, Yao J, Wang F, Min N, Gu J h, Li Z f, Sunahara G, Duran R, Solevic-Knudsen T, Hudson-Edwards KA, et al. 2019. Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation. Environ Pollut. 247:98–107. doi:10.1016/j.envpol.2018.12.045.
  • Liu Y, Zhou J, Sun D, Chen H, Qin J, Chen G, Qiu R. 2023. Polyaspartic acid assisted-phytoremediation of cadmium-contaminated farmland: phytoextraction efficiency, soil quality, and rhizosphere microbial community. Sci Total Environ. [Internet]. 862:160736. doi:10.1016/j.scitotenv.2022.160736.
  • Lopez S, van der Ent A, Sumail S, Sugau JB, Buang MM, Amin Z, Echevarria G, Morel JL, Benizri E. 2020. Bacterial community diversity in the rhizosphere of nickel hyperaccumulator plant species from Borneo Island (Malaysia). Environ Microbiol. 22(4):1649–1665. doi:10.1111/1462-2920.14970.
  • Luo J, Gu S, Guo X, Liu Y, Tao Q, Zhao HP, Liang Y, Banerjee S, Li T. 2022. Core Microbiota in the Rhizosphere of Heavy Metal Accumulators and Its Contribution to Plant Performance. Environ Sci Technol. 56(18):12975–12987. doi:10.1021/acs.est.1c08832.
  • Maretto L, Deb S, Ravi S, Chiodi C, Manfredi P, Squartini A, Concheri G, Renella G, Stevanato P. 2022. Microbial diversity of reconstituted, degraded, and agricultural soils assessed by 16S rDNA multi-amplicon sequencing. Front Environ Sci. 9:1–11. doi:10.3389/fenvs.2021.807889.
  • Mensah AK, Marschner B, Antoniadis V, Stemn E, Shaheen SM, Rinklebe J. 2021. Human health risk via soil ingestion of potentially toxic elements and remediation potential of native plants near an abandoned mine spoil in Ghana. Sci Total Environ. 798:149272. doi:10.1016/j.scitotenv.2021.149272.
  • Mensah AK, Marschner B, Shaheen SM, Wang J, Wang SL, Rinklebe J. 2020. Arsenic contamination in abandoned and active gold mine spoils in Ghana: geochemical fractionation, speciation, and assessment of the potential human health risk. Environ Pollut. 261:114116. doi:10.1016/j.envpol.2020.114116.
  • Milla-Moreno E, Guy RD. 2021. Growth response, uptake and mobilization of metals in native plant species on tailings at a Chilean copper mine. Int J Phytoremediation. 23(5):539–547. doi:10.1080/15226514.2020.1838435.
  • Muehe EM, Weigold P, Adaktylou IJ, Planer-Friedrich B, Kraemer U, Kappler A, Behrens S. 2015. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri. Appl Environ Microbiol. 81(6):2173–2181. doi:10.1128/AEM.03359-14.
  • Muszyńska E, Hanus-Fajerska E. 2015. Why are heavy metal hyperaccumulating plants so amazing? bta. 4(4):265–271. doi:10.5114/bta.2015.57730.
  • Narayanan M, Ma Y. 2023. Mitigation of heavy metal stress in the soil through optimized interaction between plants and microbes. J Environ Manage. [Internet]. 345:118732. doi:10.1016/j.jenvman.2023.118732.
  • Nkansah FK, Belford EJD. 2017. Heavy metals accumulation by indigenous plants growing in contaminated soil in a Gold Mining Area in Ghana. J Nat Sci Res. 7(24):41–47. https://www.iiste.org/Journals/index.php/JNSR/article/view/40117.
  • Osman NA, Roslan AM, Ibrahim MF, Hassan MA. 2020. Potential use of pennisetum purpureum for phytoremediation and bioenergy production: a mini review. APJMBB. 28(1):14–26. doi:10.35118/apjmbb.2020.028.1.02.
  • Parks DH, Tyson GW, Hugenholtz P, Beiko RG. 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 30(21):3123–3124. doi:10.1093/bioinformatics/btu494.
  • Petelka J, Abraham J, Bockreis A, Deikumah JP, Zerbe S. 2019. Soil heavy metal(loid) pollution and phytoremediation potential of native plants on a Former Gold Mine in Ghana. Water Air Soil Pollut. 230(11):1–16. doi:10.1007/s11270-019-4317-4.
  • Purwadi I, Gei V, Echevarria G, Erskine PD, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, van der Ent A. 2021. Tools for the Discovery of Hyperaccumulator Plant Species in the Field and in the Herbarium. In: van der Ent A, Baker AJM, Echevarria G, Simonnot M-O, Morel JL, (Eds). Agromining. Farming for metals. Extracting Unconventional Resources Using Plants. Mineral Resource Reviews. 2nd ed. Cham: Springer. p. 183–195. doi:10.1007/978-3-030-58904-2_9.
  • Qian L, Lin H, Li B, Dong Y. 2023. Physicochemical characteristics and microbial communities of rhizosphere in complex amendment-assisted soilless revegetation of gold mine tailings. Chemosphere. [Internet]. 320(October 2022):138052. doi:10.1016/j.chemosphere.2023.138052.
  • Qu H, Ma C, Xing W, Xue L, Liu H, White JC, Chen G, Xing B. 2022. Effects of copper oxide nanoparticles on Salix growth, soil enzyme activity and microbial community composition in a wetland mesocosm. J Hazard Mater. 424(Pt D):127676. doi:10.1016/j.jhazmat.2021.127676.
  • Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A. 2018. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 218(2):407–411. doi:10.1111/nph.14907.
  • Romero MF, Gallego D, Lechuga-Jiménez A, Martínez JF, Barajas HR, Hayano-Kanashiro C, Peimbert M, Cruz-Ortega R, Molina-Freaner FE, Alcaraz LD. 2021. Metagenomics of mine tailing rhizospheric communities and its selection for plant establishment towards bioremediation. Microbiol Res. 247:126732. doi:10.1016/j.micres.2021.126732.
  • Seth CS, Kumar Chaturvedi P, Misra V. 2008. The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf. 71(1):76–85. doi:10.1016/j.ecoenv.2007.10.030.
  • Sey E, Belford EJ. 2019. Levels of heavy metals and contamination status of a decommissioned Tailings Dam in Ghana. J Environ Qual. 35:33–50. doi:10.6092/issn.2281-4485/9060.
  • Sheoran V, S.Sheoran A, Poonia P. 2013. Phytomining of gold: a review. J Geochemical Explor. [Internet]. 128:42–50. doi:10.1016/j.gexplo.2013.01.008.
  • Sibanda T, Selvarajan R, Msagati T, Venkatachalam S, Meddows-Taylor S. 2019. Defunct gold mine tailings are natural reservoir for unique bacterial communities revealed by high-throughput sequencing analysis. Sci Total Environ. 650(Pt 2). :2199–2209. doi:10.1016/j.scitotenv.2018.09.380.
  • Song YQ, Shahir S, Abd Manan F. 2021. Bacterial inoculant-assisted phytoremediation of heavy metal-contaminated soil: inoculant development and the inoculation effects. Biologia . 76(9):2675–2685. doi:10.1007/s11756-021-00804-y.
  • Soylak M, Kizil N. 2011. Determination of some heavy metals by flame atomic absorption spectrometry before coprecipitation with neodymium hydroxide. J AOAC Int. 94(3):978–984. doi:10.1093/jaoac/94.3.978.
  • Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, et al. 2006. Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J. 48(1):85–97. doi:10.1111/j.1365-313X.2006.02853.x.
  • Taylor S. 1964. Abundance of chemical elements in the continental crust : a new table. Geochim Cosmochim Acta. 28(8):1273–1285. doi:10.1016/0016-7037(64)90129-2.
  • Verma P, Rawat S. 2021. Rhizoremediation of heavy metal- and xenobiotic-contaminated soil: An eco-friendly approach. In Shah MP (Eds). Removal of Emerging Contaminants through Microbial Processes. Singapore: Springer. p. 95–113. doi:10.1007/978-981-15-5901-3_5.
  • Wan X, Zeng W, Cai W, Lei M, Liao X, Chen T. 2023. Progress and future prospects in co-planting with hyperaccumulators: application to the sustainable use of agricultural soil contaminated by arsenic, cadmium, and nickel. Crit Rev Environ Sci Technol. 53(24):2112–2131. doi:10.1080/10643389.2023.2215684.
  • Wu Y, Ma L, Zhang X, Topalović O, Liu Q, Feng Y, Yang X. 2020. A hyperaccumulator plant Sedum alfredii recruits Cd/Zn-tolerant but not Pb-tolerant endospheric bacterial communities from its rhizospheric soil. Plant Soil. 455(1–2):257–270. doi:10.1007/s11104-020-04684-0.
  • Xiao E, Cui J, Sun W, Jiang S, Huang M, Kong D, Wu Q, Xiao T, Sun X, Ning Z. 2021. Root microbiome assembly of As-hyperaccumulator Pteris vittata and its efficacy in arsenic requisition. Environ Microbiol. 23(4):1959–1971. doi:10.1111/1462-2920.15299.
  • Xiao E, Ning Z, Xiao T, Sun W, Qiu Y, Zhang Y, Chen J, Gou Z, Chen Y. 2019. Variation in rhizosphere microbiota correlates with edaphic factor in an abandoned antimony tailing dump. Environ Pollut. 253:141–151. doi:10.1016/j.envpol.2019.06.097.
  • Xie L, van Zyl D. 2020. Distinguishing reclamation, revegetation and phytoremediation, and the importance of geochemical processes in the reclamation of sulfidic mine tailings: a review. Chemosphere. 252:126446. doi:10.1016/j.chemosphere.2020.126446.
  • Yang C, Han N, Inoue C, Yang YL, Nojiri H, Ho YN, Chien MF. 2022. Rhizospheric plant-microbe synergistic interactions achieve efficient arsenic phytoextraction by Pteris vittata. J Hazard Mater. [Internet]. 434:128870. doi:10.1016/j.jhazmat.2022.128870.
  • Yu F, Tang S, Shi X, Liang X, Liu K, Huang Y, Li Y. 2022. Phytoextraction of metal(loid)s from contaminated soils by six plant species: a field study. Sci Total Environ. 804:150282. doi:10.1016/j.scitotenv.2021.150282.
  • Yu X, Shen T, Kang X, Cui Y, Chen Q, Shoaib M, Liu H, Zhang F, Hussain S, Xiang Q, et al. 2021. Long-term phytoremediation using the symbiotic Pongamia pinnata reshaped soil micro-ecological environment. Sci Total Environ. 774:145112. doi:10.1016/j.scitotenv.2021.145112.
  • Zhang X, Lin L, Zhu Z, Yang X, Wang Y, An Q. 2013. Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum Alfredii. Int J Phytoremediation. 15(1):51–64. doi:10.1080/15226514.2012.670315.
  • Zhang X, Wu Q, Gao S, Wang Z, He S. 2021. Distribution, source, water quality and health risk assessment of dissolved heavy metals in major rivers in Wuhan, China. PeerJ. 9:e11853. doi:10.7717/peerj.11853.
  • Zhang X, Xia H, Li Z, Zhuang P, Gao B. 2010. Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol. [Internet]. 101(6):2063–2066. doi:10.1016/j.biortech.2009.11.065.
  • Zhou X, Liang J, Luan Y, Song X, Zhang Z. 2020. The influence of genetically modified glyphosate-tolerant maize CC-2 on rhizosphere bacterial communities revealed by miseq sequencing. Plant Soil Environ. 66(8):387–394. doi:10.17221/216/2020-PSE.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.