77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Acidified groundnut cake for enhanced bio adsorption of anionic textile dye Reactive Red 195

, , &

References

  • Abegunde SM, Idowu KS, Adejuwon OM, Adeyemi-Adejolu T. 2020. A review on the influence of chemical modification on the performance of adsorbents. Resour Environ Sustain. 1:100001. doi: 10.1016/j.resenv.2020.100001.
  • Abidi N, Duplay J, Jada A, Errais E, Ghazi M, Semhi K, Trabelsi-Ayadi M. 2019. Removal of anionic dye from textile industries’ effluents by using Tunisian clays as adsorbents. Ζeta potential and streaming-induced potential measurements. C R Chim. 22(2–3):113–125. doi: 10.1016/j.crci.2018.10.006.
  • Acharya J, Sahu JN, Sahoo BK, Mohanty CR, Meikap BC. 2009. Removal of chromium(VI) from wastewater by activated carbon developed from tamarind wood activated with zinc chloride. Chem Eng J. 150(1):25–39. doi: 10.1016/j.cej.2008.11.035.
  • Afroze S, Sen TK. 2018. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut. 229(7):225. doi: 10.1007/s11270-018-3869-z.
  • Aghajari N, Ghasemi Z, Younesi H, Bahramifar N. 2019. Synthesis, characterization and photocatalytic application of Ag-doped Fe-ZSM-5@TiO2 nanocomposite for degradation of Reactive Red 195 (RR 195) in aqueous environment under sunlight irradiation. J Environ Health Sci Eng. 17(1):219–232. doi: 10.1007/s40201-019-00342-5.
  • Alalwan HA, Kadhom MA, Alminshid AH. 2020. Removal of heavy metals from wastewater using agricultural byproducts. Aqua. 69(2):99–112. doi: 10.2166/aqua.2020.133.
  • Alhares HS, Shaban MAA, Salman MS, M-Ridha MJ, Mohammed SJ, Abed KM, Ibrahim MA, Al-Banaa AK, Hasan HA. 2023. Sunflower husks coated with copper oxide nanoparticles for Reactive Blue 49 and Reactive Red 195 removals: adsorption mechanisms, thermodynamic, kinetic, and isotherm studies. Water Air Soil Pollut. 234(1):35. doi: 10.1007/s11270-022-06033-6.
  • Aljeboree AM, Alshirifi AN, Alkaim AF. 2017. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem. 10(May):S3381–S3393. doi: 10.1016/j.arabjc.2014.01.020.
  • Amalina F, Syukor Abd Razak A, Krishnan S, Zularisam AW, Nasrullah M. 2022a. The effects of chemical modification on adsorbent performance on water and wastewater treatment – a review. Bioresour Technol Rep. 20:101259. doi: 10.1016/j.biteb.2022.101259.
  • Amalina F, Syukor Abd Razak A, Krishnan S, Zularisam AW, Nasrullah M. 2022b. Dyes removal from textile wastewater by agricultural waste as an absorbent – a review. Clean Waste Syst. 3(December):100051. doi: 10.1016/j.clwas.2022.100051.
  • Azadfar M, Tahermansouri H, Qomi M. 2021a. Application of the graphene oxide/chitosan nanocomposite in the removal of methyl orange from aqueous solutions: a mechanism study. Indian J Chem – Section A (IJCA). 60(2):209–219.
  • Azadfar M, Tahermansouri H, Qomi M. 2021b. The picric acid removal from aqueous solutions by multi‐walled carbon nanotubes/EDTA/carboxymethylcellulose nanocomposite: central composite design optimization, kinetic, and isotherm studies. J Chin Chem Soc. 68(11):2103–2117. doi: 10.1002/jccs.202100339.
  • Azaro M, Flores FM, Casella M, Peroni B, Rodríguez C, Torres Sánchez RM, Jaworski M. 2021. Synthesis and characterization of adsorbents for the elimination of nitrates and bromates from water aiming to develop a continuous oxyanion water elimination system. Water Supply. 21(3):1243–1252. doi: 10.2166/ws.2020.324.
  • Banerjee S, Chattopadhyaya MC. 2017. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab J Chem. 10(May):S1629–S1638. doi: 10.1016/j.arabjc.2013.06.005.
  • Bertazzo S, Rezwan K. 2010. Control of alpha-alumina surface charge with carboxylic acids. Langmuir. 26(5):3364–3371. doi: 10.1021/la903140k.
  • Birmole R, Parkar A, Aruna K. n.d. Biodegradation of Reactive Red 195 by a novel strain enterococcus Casseliflavus RDB_4 isolated from textile effluent [accessed 2023 Nov 6]. http://www.neptjournal.com/upload-images/NL-67-13-(11)B-3551.pdf.
  • Cao J-S, Lin J-X, Fang F, Zhang M-T, Hu Z-R. 2014. A new absorbent by modifying walnut shell for the removal of anionic dye: kinetic and thermodynamic studies. Bioresour Technol. 163(July):199–205. doi: 10.1016/j.biortech.2014.04.046.
  • Dai M. 1994. The effect of zeta potential of activated carbon on the adsorption of dyes from aqueous solution. J Colloid Interface Sci. 164(1):223–228. doi: 10.1006/jcis.1994.1160.
  • Dawood S, Sen TK. 2012. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res. 46(6):1933–1946. doi: 10.1016/j.watres.2012.01.009.
  • Demirbas E, Kobya M, Sulak MT. 2008. Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon. Bioresour Technol. 99(13):5368–5373. doi: 10.1016/j.biortech.2007.11.019.
  • Dey AK, Dey A. 2021. Selection of optimal processing condition during removal of Reactive Red 195 by NaOH treated jute fibre using adsorption. Groundw Sustain Dev. 12(February):100522. doi: 10.1016/j.gsd.2020.100522.
  • Dong Y, Wang P, Li B. 2019. Fe complex immobilized on waste polypropylene fibers for fast degradation of Reactive Red 195 via enhanced activation of persulfate under LED visible irradiation. J Clean Prod. 208(January):1347–1356. doi: 10.1016/j.jclepro.2018.10.211.
  • Dutta S, Gupta B, Srivastava SK, Gupta AK. 2021. Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Mater Adv. 2(14):4497–4531. doi: 10.1039/D1MA00354B.
  • Felista MM, Wanyonyi WC, Ongera G. 2020. Adsorption of anionic dye (Reactive Black 5) using macadamia seed husks: kinetics and equilibrium studies. Sci Afr. 7(March):e00283. doi: 10.1016/j.sciaf.2020.e00283.
  • Feuzer-Matos AJ, Testolin RC, Cotelle S, Sanches-Simões E, Pimentel-Almeida W, Niero G, Walz GC, Ariente-Neto R, Somensi CA, Radetski CM. 2021. Degradation of recalcitrant textile azo-dyes by Fenton-based process followed by biochar polishing. J Environ Sci Health A Tox Hazard Subst Environ Eng. 56(9):1019–1029. doi: 10.1080/10934529.2021.1959774.
  • García FE, Plaza-Cazón J, Nahuel Montesinos V, Donati ER, Litter MI. 2018. Combined strategy for removal of Reactive Black 5 by biomass sorption on Macrocystis pyrifera and zerovalent iron nanoparticles. J Environ Manage. 207(February):70–79. doi: 10.1016/j.jenvman.2017.11.002.
  • Gündüz Z, Atabey M. 2019. Effects of operational parameters on the decolourisation of Reactive Red 195 dye from aqueous solutions by electrochemical treatment. Int J Electrochem Sci. 14(6):5868–5885. doi: 10.20964/2019.06.37.
  • Gupta VK, Jain R, Siddiqui MN, Saleh TA, Agarwal S, Malati S, Pathak D. 2010. Equilibrium and thermodynamic studies on the adsorption of the dye rhodamine-B onto mustard cake and activated carbon. J Chem Eng Data. 55(11):5225–5229. doi: 10.1021/je1007857.
  • Han Z-X, Zhu Z, Wu D-D, Wu J, Liu Y-R. 2014. Adsorption kinetics and thermodynamics of acid Blue 25 and methylene blue dye solutions on natural sepiolite. Synth React Inorg Metal-Organic Nano-Metal Chem. 44(1):140–147. doi: 10.1080/15533174.2013.770755.
  • Harja M, Buema G, Bucur D. 2022. Recent advances in removal of Congo red dye by adsorption using an industrial waste. Sci Rep. 12(1):6087. doi: 10.1038/s41598-022-10093-3.
  • Huang B, Liu G, Wang P, Zhao X, Xu H. 2019. Effect of nitric acid modification on characteristics and adsorption properties of lignite. Processes. 7(3):167. doi: 10.3390/pr7030167.
  • Jain SN, Tamboli SR, Sutar DS, Jadhav SR, Marathe JV, Shaikh AA, Prajapati AA. 2020. Batch and continuous studies for adsorption of anionic dye onto waste tea residue: kinetic, equilibrium, breakthrough and reusability studies. J Clean Prod. 252(April):119778. doi: 10.1016/j.jclepro.2019.119778.
  • Jamil N, Khan SM, Ahsan N, Anwar J, Qadir A, Zameer M, Shafique U. 2014. Removal of DIRECT Red 16 (textile dye) from industrial effluent by using feldspar. J Chem Soc Pak. 36(2):191.
  • Jóźwiak T, Filipkowska U, Brym S, Kopeć L. 2020. Use of aminated hulls of sunflower seeds for the removal of anionic dyes from aqueous solutions. Int J Environ Sci Technol. 17(3):1211–1224. doi: 10.1007/s13762-019-02536-8.
  • Kumar P, Chauhan MS. 2019. Adsorption of chromium(VI) from the synthetic aqueous solution using chemically modified dried water hyacinth roots. J Environ Chem Eng. 7(4):103218. doi: 10.1016/j.jece.2019.103218.
  • Lesaoana M, Mlaba RPV, Mtunzi FM, Klink MJ, Ejidike P, Pakade VE. 2019. Influence of inorganic acid modification on Cr(VI) adsorption performance and the physicochemical properties of activated carbon. S Afr J Chem Eng. 28(April):8–18. doi: 10.1016/j.sajce.2019.01.001.
  • Li J, Wang S, Peng J, Lin G, Hu T, Zhang L. 2017. Selective adsorption of anionic dye from solutions by modified activated carbon. Arab J Sci Eng. 43(11):5809–5817. doi: 10.1007/s13369-017-3006-0.
  • Liao S-W, Lin C-I, Wang L-H. 2011. Kinetic study on lead(II) ion removal by adsorption onto peanut hull ash. J Taiwan Inst Chem Eng. 42(1):166–172. doi: 10.1016/j.jtice.2010.04.009.
  • Mahanna H, Azab M. 2020. Adsorption of Reactive Red 195 dye from industrial wastewater by dried soybean leaves modified with acetic acid. DWT. 178:312–321. doi: 10.5004/dwt.2020.24960.
  • M-Ridha MJ, Hussein SI, Alismaeel ZT, Atiya MA, Aziz GM. 2020. Biodegradation of reactive dyes by some bacteria using response surface methodology as an optimization technique. Alex Eng J. 59(5):3551–3563. doi: 10.1016/j.aej.2020.06.001.
  • Munagapati VS, Wen J-C, Pan C-L, Gutha Y, Wen J-H, Reddy GM. 2020. Adsorptive removal of anionic dye (Reactive Black 5) from aqueous solution using chemically modified banana peel powder: kinetic, isotherm, thermodynamic, and reusability studies. Int J Phytoremediation. 22(3):267–278. doi: 10.1080/15226514.2019.1658709.
  • Munagapati VS, Wen H-Y, Wen J-C, Gollakota ARK, Shu C-M, Lin K-YA, Wen J-H. 2022. Adsorption of Reactive Red 195 from aqueous medium using lotus (Nelumbo nucifera) leaf powder chemically modified with dimethylamine: characterization, isotherms, kinetics, thermodynamics, and mechanism assessment. Int J Phytoremediation. 24(2):131–144. doi: 10.1080/15226514.2021.1929060.
  • Munagapati VS, Yarramuthi V, Kim Y, Lee KM, Kim D-S. 2018. Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using banana peel powder as an adsorbent. Ecotoxicol Environ Saf. 148(February):601–607. doi: 10.1016/j.ecoenv.2017.10.075.
  • Murithi G, Onindo CO, Muthakia GK. 2012. Kinetic and equilibrium study for the sorption of Pb(II) ions from aqueous phase by water hyacinth (Eichhornia crassipes). Bull Chem Soc Ethiop. 26(2):181–193. doi: 10.4314/bcse.v26i2.3.
  • Naushad M, Mittal A, Rathore M, Gupta V. 2015. Ion-exchange kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions over a composite cation exchanger. Desalin Water Treat. 54(10):2883–2890. doi: 10.1080/19443994.2014.904823.
  • Nazari P, Setayesh SR. 2019. Effective degradation of Reactive Red 195 via heterogeneous electro-Fenton treatment: theoretical study and optimization. Int J Environ Sci Technol. 16(10):6329–6346. doi: 10.1007/s13762-018-2048-5.
  • Ngo ACR, Tischler D. 2022. Microbial degradation of azo dyes: approaches and prospects for a hazard-free conversion by microorganisms. Int J Environ Res Public Health. 19(8):4740. doi: 10.3390/ijerph19084740.
  • Nuithitikul K, Phromrak R, Saengngoen W. 2020. Utilization of chemically treated cashew-nut shell as potential adsorbent for removal of Pb(II) ions from aqueous solution. Sci Rep. 10(1):3343. doi: 10.1038/s41598-020-60161-9.
  • Olasehinde EF, Abegunde SM. 2020. Adsorption of methylene blue onto acid modified Raphia taedigera seed activated carbon. http://repository.elizadeuniversity.edu.ng/handle/20.500.12398/825.
  • Park S-J, Jang Y-S. 2002. Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(VI). J Colloid Interface Sci. 249(2):458–463. doi: 10.1006/jcis.2002.8269.
  • Pathania D, Gupta D, Al-Muhtaseb AH, Sharma G, Kumar A, Naushad M, Ahamad T, Alshehri SM. 2016. Photocatalytic degradation of highly toxic dyes using chitosan-g-poly(acrylamide)/ZnS in presence of solar irradiation. J Photochem Photobiol A, Chem. 329(October):61–68. doi: 10.1016/j.jphotochem.2016.06.019.
  • Pérez-Calderón J, Santos MV, Zaritzky N. 2020. Synthesis, characterization and application of cross-linked chitosan/oxalic acid hydrogels to improve azo dye (Reactive Red 195) adsorption. React Funct Polym. 155(October):104699. doi: 10.1016/j.reactfunctpolym.2020.104699.
  • Qiu J, Feng Y, Zhang X, Jia M, Yao J. 2017. Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: adsorption performance and mechanisms. J Colloid Interface Sci. 499(August):151–158. doi: 10.1016/j.jcis.2017.03.101.
  • Rasool K, Lee DS. 2015. Characteristics, kinetics and thermodynamics of Congo Red biosorption by activated sulfidogenic sludge from an aqueous solution. Int J Environ Sci Technol. 12(2):571–580. doi: 10.1007/s13762-013-0462-2.
  • Sen TK. 2023. Agricultural solid wastes based adsorbent materials in the remediation of heavy metal ions from water and wastewater by adsorption: a review. Molecules. 28(14):5575. doi: 10.3390/molecules28145575.
  • Sennaj R, Lemriss S, Souiri A, Kabbaj SEL, Chafik A, Essamadi AK, Benali T, Fassouane A, Dari K, Aassila H. 2023. Eco-friendly degradation of Reactive Red 195, Reactive Blue 214, and Reactive Yellow 145 by Klebsiella pneumoniae MW815592 isolated from textile waste. J Microbiol Methods. 204(January):106659. doi: 10.1016/j.mimet.2022.106659.
  • Sharif Nasirian V, Shahidi S-A, Tahermansouri H, Chekin F. 2021. Application of graphene oxide in the adsorption and extraction of bioactive compounds from lemon peel. Food Sci Nutr. 9(7):3852–3862. doi: 10.1002/fsn3.2363.
  • Somasekhara Reddy MC, Sivaramakrishna, L, Varada Reddy, A. 2012. The use of an agricultural waste material, jujuba seeds for the removal of anionic dye (Congo Red) from aqueous medium. J Hazard Mater. 203–204(February):118–127. doi: 10.1016/j.jhazmat.2011.11.083.
  • Sultana M, Hasan Rownok M, Sabrin M, Hafezur Rahaman M, Nur Alam SM. 2022. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Clean Eng Technol. 6(February):100382. doi: 10.1016/j.clet.2021.100382.
  • Sun D, Zhang X, Wu Y, Liu X. 2010. Adsorption of anionic dyes from aqueous solution on fly ash. J Hazard Mater. 181(1–3):335–342. doi: 10.1016/j.jhazmat.2010.05.015.
  • Thangaraj S, Bankole PO, Kumar Sadasivam S, Kumarvel V. 2021. Biodegradation of Reactive Red 198 by textile effluent adapted microbial strains. Arch Microbiol. 204(1):12. doi: 10.1007/s00203-021-02608-9.
  • Thuy Luong Thi T, Ta HS, Le Van K. 2021. Activated carbons from coffee husk: preparation, characterization, and Reactive Red 195 adsorption. J Chem Res. 45(5–6):380–394. doi: 10.1177/1747519820970469.
  • Tole I, Habermehl-Cwirzen K, Cwirzen A. 2019. Mechanochemical activation of natural clay minerals: an alternative to produce sustainable cementitious binders – review. Miner Petrol. 113(4):449–462. doi: 10.1007/s00710-019-00666-y.
  • Tran TH, Le AH, Pham TH, Nguyen DT, Chang SW, Chung WJ, Nguyen DD. 2020. Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Sci Total Environ. 725(July):138325. doi: 10.1016/j.scitotenv.2020.138325.
  • Tümsek F, Avcı Ö. 2013. Investigation of kinetics and isotherm models for the Acid Orange 95 adsorption from aqueous solution onto natural minerals. J Chem Eng Data. 58(3):551–559. doi: 10.1021/je301215s.
  • Uddin MK, Nasar A. 2020. Walnut shell powder as a low-cost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations. Sci Rep. 10(1):7983. doi: 10.1038/s41598-020-64745-3.
  • Wong S, Ghafar NA, Ngadi N, Razmi FA, Inuwa IM, Mat R, Amin NAS. 2020. Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Sci Rep. 10(1):2928. doi: 10.1038/s41598-020-60021-6.
  • Wu Y, Cha L, Fan Y, Fang P, Ming Z, Sha H. 2017. Activated biochar prepared by pomelo peel using H3PO4 for the adsorption of hexavalent chromium: performance and mechanism. Water Air Soil Pollut. 228(10):405. doi: 10.1007/s11270-017-3587-y.
  • Wu J, Yang J, Feng P, Huang G, Xu C, Lin B. 2020. High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar. Chemosphere. 246(May):125734. doi: 10.1016/j.chemosphere.2019.125734.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.